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Abstract: The center of pressure (CoP) of ground reaction forces is an effective factor
to evaluate the biped balance. From this point of view, we proposed a new CoP control
method based on its feedback information. In this paper, we apply it to the weight shifts
in the double support phase of the biped system. This method does not require the desired
trajectories of joint angles, because of which the CoG is adaptively controlled according
to the external forces without re-designing the motion pattern. The simulations and robot
experiments will show the effectiveness of this control law.Copyright c© 2003 IFAC
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1. INTRODUCTION

The balance control is a fatal problem for the biped
locomotion. The concept of ZMP (zero moment point)
(Vukobratovic et al., 1989) is proposed in order to
design motion patterns such that keep balance dur-
ing the locomotion, in other words, do not make foot
rotations. In fact, many biped robots adopt a control
strategy in that the desired trajectories of joint angles
are firstly designed based on the ZMP condition and
after that the feedback control is executed for the
designed ones (Vukobratovicet al., 1989; Takanishi
et al., 1988). However, in this strategy, the ZMP is
controlled in a feed forward manner in a sense that the
actual ZMP position is not measured by sensors and
not used for torque determination, implying that it has
a weakness for environmental variations or parameter
errors: the motion patterns cannot be designed without
assuming any environmental conditions and model-
ing parameters. If the actual environmental conditions
are different from these assumptions, the ZMP is not
controlled to the desired position even if the joint an-
gles track exactly the designed trajectories. Recently,
some papers reported methods in which the desired
positional trajectories are modified according to the

measured ZMP position (Hiraiet al., 1998; Haunget
al., 2000; Park and Cho, 2000). In these works, the
robot behaviors are examined only experimentally, or
sometimes by simulations, and thus the mathematical
consideration is not sufficiently mentioned.

In order to cope with environmental variations such
as a change of the ground gradient, it is effective
to make use of the information on ground reaction
forces. From this scope, we proposed a static balance
control method for the biped upright posture in the
previous paper (Itoet al., 2001), where we achieved
a adaptive posture changes according to external force
by controlling the ground reaction forces (see the next
section). The purpose of this paper is to extend this
method to biped locomotion control. For the first step,
we here consider the weight shift control during dou-
ble support phase within the frontal plane, since this
motion is fundamental for biped locomotion next to
upright standing: From upright standing to walking
motion, humans have to shift their weight to the one
side in order to swing forward the leg in the other side.
Our stance in this paper is that the desired trajectory
of joint angles is not directly designed. Instead, we
design the trajectory of the CoP of ground reaction
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Fig. 1. Link model.

forces and so the motion pattern emerges as an indirect
result of the CoP control. The CoP is known to be
equivalent to ZMP (Goswami, 1999). Therefore, our
method is regarded as the feedback control of ZMP.
Owing to this feedback, even though the environmen-
tal conditions gradually change, the balance is main-
tained as before.

2. UPRIGHT POSTURE CONTROL BASED ON
GROUND REACTION FORCES

Firstly, we review a balance control based on the
ground reaction forces proposed in the previous paper
(Ito et al., 2001), since it forms the basis of our
approach in this paper. Assumptions of the control
law are follows. The biped system consists of body
part and foot part, which are connected at the ankle
joint as shown in Fig. 1(a). The motion occurs only
in the sagittal plane. The ankle joint angleθ and its
velocity θ̇ are detectable, while appropriate torqueτ
is actively generated at the ankle joint. The foot part
contacts to the ground at the two points, i.e., heel
and toe, where the vertical component of the ground
reaction force there, i.e.,FH andFT , are measurable.
The foot part does not slip on the ground and its shape
is symmetrical in the anterior-posterior direction. The
ankle joint is located at the midpoint of the foot part
with zero height.

Suppose here that unknown constant external force
is exerted, whose horizontal and vertical component
is Fx and Fy, respectively. If balance is kept, only
the body part has dynamics which is described as the
motion equation,

Iθ̈ = MLg sin θ + FxL cos θ − FyL sin θ + τ.

= AL sin(θ − θf ) + τ (1)

where

A =
√

(Mg − Fy)2 + F 2
x (2)

andθf is a constant satisfying

sin θf = −Fx

A
, cos θf =

Mg − Fy

A
. (3)

And, M is mass of the body part,I is its moment of
inertia around the ankle joint,L is the length between
ankle joint and center of gravity (CoG) of the body
part andg is the gravitational acceleration.

The goal of the control is to keep the postural balance
regardless of the constant external forceFx andFy.
It is most effectively achieved by makingFT andFH

equal. As one solution of it, the following theorem is
available.

Theorem: For the dynamical system (1), consider the
torque inputτ as follows:

τ = −Kdθ̇ + Kp(θd − θ) + Kf

∫
(FH − FT )dt. (4)

If feedback gainKd, Kp andKf satisfy the conditions

Kp > AL > 0 (5)

`

I
Kd > Kf > 0 (6)

(Kd`−KfI)Kp > Kd`AL, (7)

then, FH = FT holds at the stationary state and
θ = θf becomes a local asymptotic stable posture.

Proof: Firstly, we define a new state variableτf by the
following equation,

τf =
∫

(FH − FT )dt. (8)

Substituting (4), (1) turns to

Iθ̈ = AL sin(θ − θf )

−Kdθ̇ + Kp(θd − θ) + Kfτf , (9)

On the other hand, the ground reaction forces are
described with ankle joint torque as,

FT = − 1
2`

τ +
1
2
mg +

1
2
fy, (10)

FH =
1
2`

τ +
1
2
mg +

1
2
fy, (11)

wherem is a mass of the foot part and` is the length
from the ankle joint to the toe or the heel, andfy is the
vertical component of the force from the body part.



Differentiating (8) and then substituting (10), (11) and
(4), we obtain

τ̇f =
1
`
(−Kdθ̇ + Kp(θd − θ) + Kfτf ). (12)

The dynamical system described by (9) and (12) have
an equilibrium point(θ̄, τ̄f ),

(θ̄, τ̄f ) = (θf ,
Kp

Kf
(θf − θd)) (13)

Note thatFH = FT , becausėτf = 0 at the stationary
state. By analyzing the stability of this equilibrium
point with the linearized equations, (5)-(7) can be
derived from Routh/Hurwitz method.2

3. CONTROL IN DOUBLE SUPPORT PHASE

3.1 Problem and assumptions

Here, we attempt to extend the method in the previous
section to the weight shift control in the biped double
support phase within the frontal plane. The problem is
to move the point on which body’s weight is placed
into the desired position. Then, we use a model as
shown in Fig. 1(b). This consists of 5 links containing
one body part, two leg parts and two foot parts. Ankle
joints are assumed to be located at the center of foot
part with zero height. At both sides of foot part, the
ground reaction forces are detectable. Furthermore,
at the ankle and the hip joints, angular deviations its
velocities are measurable as well as the joint torque
are generated.

3.2 Control law

In the double support phase, the foot parts keep con-
tact to the ground, which makes closed link mecha-
nism. Although 3 links, i.e., body part and two leg
parts, actually move, the degree of freedom (DoF)
of this mechanism is only one. Because the control
method in the previous section is also for 1-DoF mo-
tions, we utilize it for the problem here. However,
there are three differences from the upright posture
control in the previous section: Firstly, the contact
points are more than two, i.e., four contact points.
Second, the orbit of CoG motion is not an extact
circle. Third, the torque generation is redundant. To
solve problems originating from these differences, we
modify the control law in the following sections.

3.2.1. Description using CoP The most serious
problem is the difference in the number of the contact
points. The difference betweenFH andFT is calcu-
lated in (4) as the number of contact points is only two.
How should we do when the number of them increases
to four?

Now, we introduce the concept of CoP. The CoP is a
representative point when the ground reaction forces
are assumed to act only at the single point. Around
CoP, the moment generated by the vertical component
of all the ground reaction forces become zero. Using
this characteristic, the position of CoP in Fig. 1(a) can
be calculated as follows,

PCoP =
FT `− FH`

FT + FH
, (14)

where,PCoP is the position of CoP from the midpoint
of the foot part. If the motion is slow, we can regard
FT + FH as constant, since it just represents the total
mass. Thus, defining constantKw as

Kw =
`

FT + FH
, (15)

the above equation changes to

PCoP = −Kw(FH − FT ). (16)

Using this relation, (4) can be written as

τ =−Kdθ̇ + Kp(θd − θ)

+ K ′
f

∫
(Pd − PCoP )dt. (17)

which have been extended to control the position of
CoP to its desired valuePd. Here,K ′

f = Kf/Kw.

In the case of the double support phase, the position of
CoP,PCoP , is calculated from the vertical component
of ground reaction forces at four contact points, i.e.,
FRO, FRI , FLO, andFLI , in the same way:

PCoP =−FRO

Fall
(xf + `f )− FRI

Fall
(xf − `f )

+
FLI

Fall
(xf − `f ) +

FLO

Fall
(xf + `f ) (18)

Fall = FRO + FRI + FLI + FLO. (19)

Here, the subscriptRO, RI , LI and LO respectively
represent the position of contact point, i.e., the right
outside, the right inside, the left inside and the left
outside,̀ f is the length from the ankle joint to the side
of the foot part, andxf is the distance to the ankle joint
form the origin of the coordinates set at the midpoint
of both ankle joints.

3.2.2. Coordinate frame for CoG motion In the
biped upright model shown in Fig. 1 (a), the CoG of
the body traces on the circular orbit. Therefore, if the
angle of the circular orbit is selected as the generalized
coordinate frame, the ankle joint torque can be defined
as the generalized force. In the double support phase,
however, the orbit of CoG in the frontal plane changes
with the length between both feet, and thus does not



always become circular. Thus, we have to arrange the
definition of the coordinate frame on the orbit.

Here, the coordinate of CoG on this frame is presented
by φ. It is preferable that this coordinate frame is
naturally extended from the one for the single support
phase. From this point of view, we defineφ as the sway
angle of CoG from the vertical direction.

φ = arctan
xG

yG
. (20)

Here,(xG, yG) denotes the coordinate of CoG whose
origin is set at the midpoint between both foot. Using
the ankle joint angle in both side, i.e.,θRA andθLA,
the coordination of CoG can be described as

xG = 2ρ cos
θRA + θLA

2
sin

θRA − θLA

2
(21)

yG = 2ρ cos
θRA + θLA

2
cos

θRA − θLA

2
(22)

Here,

ρ =
2m` + ML

2(2m + M)
. (23)

Using this relation, we obtain

xG

yG
= tan

θRA − θLA

2
(24)

According to the definition of the generalized coordi-
nate (20),φ is expressed as

φ =
θRA − θLA

2
. (25)

When the generalized force exerted in the tangential
direction of the orbit byτφ, the control input is deter-
mined as

τφ =−Kdφ̇ + Kp(φd − φ)

+ Kf

∫
(Pd − PCoP )dt (26)

Since this equation takes the same form as (4), the CoP
is expected to converge to the desired value.

3.2.3. Joint torque calculation Next, we calculate
the joint torque which produce the generalized force
τφ. When CoG moves∆φ along the orbit, the hip and
ankle joints also changes, the amount of which is put
to ∆θ (θ = [θRA, θRH , θLH , θLA]). The subscript
RA, RH , LH and LA represent the joint position,
respectively, the right ankle, the right hip, the left hip
and the left ankle. The relation between∆θ and∆φ
is described using the Jacobian matrixJ(θ) as

∆θ = J(θ)∆φ. (27)

In the coordinate frame deined in this section, the
J(θ) is calculated as follows. From (25)

φ̇ =
θ̇RA − θ̇LA

2
(28)

is satisfied. In addition, using the geometrical relation

−θRA + θRH + θLH − θLA = π (29)

and constraint conditions of the parallel mechanism,
the relation betweeṅθ andφ̇ becomes

θ̇ =
2

J1 + J3




J1

J1 − J2

J2 − J3

−J3


 φ̇ = J(θ)φ̇ (30)

J1 = 2`2 sin θLH (31)

J2 = `2 sin(θLH + θRH) (32)

J3 = 2`2 sin θRH . (33)

From the principle of virtual work, the next relation
holds between the generalized forceτφ and the joint
torquesτ = [τRA, τRH , τLH , τLA],

τφ = JT (θ)τ (34)

Solving this equation, the joint torques are given by

τ = (JT (θ))∗τφ + (I − JT (θ)(JT (θ))∗)p (35)

Here,∗ denoted its generalized inverse matrix, andp
is an arbitrary 4-dimensional vector.

3.3 Stationary state

In this section, we consider the stationary state which
is achieved by the control law (26). Here, we assume
that the joint angles can be described as a function
of φ, i.e., θ = θ(φ), which is possible if0 <
θRH , θLH < π. Note that the tangent line of CoG orbit
is not generally vertical. We can describe the motion
equation usingφ as

M(θ)φ̈ + C(θ, θ̇) + G(θ, g, F ) = τφ. (36)

where,G contains not only the gravity but also ex-
ternal forceF , i.e., Fx andFy in (1). From the me-
chanical property,M(θ) > 0 and C(θ, θ̇) become
the second order term oḟθ. On the other hand, the
joint torque gives effect to the CoP throughτφ, whose
relation is expressed as

PCoP = P (θ)τφ + Q(θ, θ̇) + R(θ, g, F ) (37)

Now, we have defined the control inputτφ by (26).
For the simplicity of calculation of stationary state, we
here introduce a new state variableτf ,

τf =
∫

(PCoP − Pd)dt (38)



Then, the motion equation (36) forφ becomes

M(θ)θ̈ + C(θ, θ̇) + G(θ, g, F ) =

−Kdφ̇ + Kp(φd − φ) + Kfτf . (39)

On the other hand, differentiatingτf , we can get

τ̇f = PCoP − Pd. (40)

Substituting (37), the above equation becomes

τ̇f = P (θ)(−Kdφ̇ + Kp(φd − φ) + Kfτf )

+Q(θ, θ̇) + R(θ, g, F )− Pd (41)

Regardingφ, φ̇, τf as state variables, we can obtain
the stationary statēφ, τ̄ . Here, what is important is
that τ̇f = 0 at the stationary state, which implies that
PCoP = Pd.

3.4 Stability

For the stability analysis, we linearize (39) and (41)
around the equilibrium point(φ̄, τ̄f ):

M̄∆φ̈ +
∂Ḡ

∂θ
J̄∆φ = ∆τφ (42)

∆τ̇f = −(
∂R̄

∂θ
+

∂P̄

∂θ
τ̄φ)J̄∆φ− P̄∆τφ (43)

Here,M̄ = M(θ̄), J̄ = J(θ̄), P̄ = P (θ̄),
∂Ḡ

∂θ
=

∂G(θ̄)
∂θ

,
∂R̄

∂θ
=

∂R(θ̄)
∂θ

,
∂P̄

∂θ
=

∂P (θ̄)
∂θ

. The contro-

lability matrix of the above linear system is



0
1
M̄

0

1
M̄

0 − 1
M̄2

∂Ḡ

∂θ
J̄

−P̄ 0 − 1
M̄

[
∂R̄

∂θ
+

∂P̄

∂θ
τ̄φ

]
J̄




(44)

If this matrix is full rank, the stationary state becomes
local stable for the suitable feedback gainsKp, Kd

and Kf , which will be designed e.g., by using the
solution of Ricatti equation for LQ theorem. Since
τ̄φ = Kp(φd − φ̄) + Kf τ̄f = Ḡ, the determinant of
the controllability matrix becomes

1
M̄3

∂

∂θ
(P̄ Ḡ + R̄)J̄ =

1
M̄3

∂

∂φ
(PG + R)

∣∣∣∣
φ=φ̄

(45)

Here, we assume that (45) is zero. Substituting (36)
into τφ of (37) and linearlize (37) around the equilib-
rium point, we obtain

∆PCoP = PM∆φ̈ +
∂

∂φ
(PG + R)

∣∣∣∣
φ=φ̄

∆φ(46)

When φ is deviated fromφ̄ slowly, ∆φ̈ is regarded
as zero. Then,∆PCoP = 0, since we assume (45) is

(s)

(m)

Pd

PCoP

Fig. 2. CoP position forFx = 0.

(s)

(m)

Pd

PCoP

Fig. 3. CoP position forFx = 0.1Mg.

Fx=0

Fx=0.1Mg

(s)

(rad)

Fig. 4. Comparison of sway angleφ.

zero. It means that CoP stays at the same position if
φ changes slowly. That will be possible if the CoG
moves vertically. However, the tangent line of CoG
orbit is not generally vertical. So, it contradicts and
the controllability matrix should be full rank, implying
that the linear system is a controllable.

4. SIMULATION

Parameters and initial state are set as follows:M =
2.5, m = 1.0, mf = 0.25, L = 0.34, ` = 0.17,
`B = 0.08, `f = 0.03 and,θRA = θLA = 0.05,
θRH = θLH = π

2 + 0.05. In this setting, the length
between left and right foot is slightly larger than the
one between two hip joints. The goal behavior is
given so that the CoP is shifted to left side, right
side, and again left side and kept to left side within
10 sec. The generalized forceτφ is determined by
(26), and next the joint torque, by (35) with taking
the torque limitation of ankle joints into account.
Two cases are tested: no external force and non-zero
horizontal external force, i.e.,Fx = 0.1Mg. The CoP
position with its desired value are shown in Fig. 2
for the former case, whereas in Fig. 3 for the latter
case. Regardless of the external force, the similar time
evolutions are observed except the initial response.
However, the difference is shown clearly in the time
course ofφ, which is illustrated in Fig. 4. In the case of



Fig. 5. robot behaviors in the experiment.

no external force,φ shows the symmetrical trajectory.
However, when the external force works, the motion
is biased to the direction against the external force,
which implies that the body is inclined on the whole
against it.

5. ROBOT EXPERIMENT

In order to examine the effectiveness of the control
method, we execute the robot experiment. The behav-
ior observed in the experiment is shown in Fig. 5. The
robot consists of 7 links (body, two thighs, shanks and
feet). The height from ground to the hip join is about
40 cm at the upright posture, the horizontal distance
between hip joints is 16 cm, and the foot width is 6 cm
for each side. The DoFs of the robot are 12 (3 in hip, 1
in knee and 2 in ankle for one leg). However, in order
to restrict the motion in the frontal plane, the DoFs of
the pitch and yaw rotation in the hip, knee, and ankle
joints are mechanically locked respectively. Moreover,
in order to place the weight evenly in the both side of
the foot, i.e., to letFRI = FRO andFLI = FLO, we
set the ankle torque zero, which is achieved by making
the ankle joints free. Consequently, only the hip joint
torque in the roll axis controls the lateral motion in the
frontal plain. The total weight of the robot is about 5.0
kgf. The angles of each joint are measured by rotary
encoders installed in each motor, while the ground
reaction forces are measured by the loadcells attached
at each corner of the sole.

The initial posture is set so that the legs are slightly
open, i.e., the distance between ankle joints becomes
24 cm. The desired and actual trajectory of CoP in the
experiment on the horizontal floor is shown in Fig.
6. The CoP almost tracks the desired trajectory with
slight delay. The similar results are also obtained from
another experiment where the legs are set parallel each
other in the initial state, which make the balance more
difficult to maintain than from the previous condition.

6. CONCLUSION

In this paper, we consider the CoP control in the
double support phase of biped system. We proposed
a method using the feedback of the ground reaction
forces, in which the CoP position becomes the main

(s)

desired

actual

(m)

Fig. 6. CoP position of robot experiment in the level
floor.

controlled variable. In this method, the desired trajec-
tory of joint angle is unnecessary, since this control is
essentially force control. Thanks to this characteristic,
the behavior, i.e., the CoG trajectory automatically
changes with the constant external force. As a feature
works, we extend it to the stepping motion and finally
the locomotion.
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