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Abstract: In this paper, we present a control method of upright posture under periodic external forces with
known period. First, the upright posture is maintained based on the feedback of ground reaction forces.
However, being exposed to such a stationary condition for a while, external forces are estimated using the
framework of adaptive control. Consequently, the balance maintenance is achieved without feedback of
ground reaction forces.
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1. Introduction

To keep upright posture is a fundamental control problem for
biped system. If all the environmental conditions are known,
the posture such that the CoG (center of gravity) of the whole
body comes above the foot part can be set as the desired pos-
ture in the designing stage of motion pattern. Thus, to avoid
falling down, the positional feedback control for achieving
such posture is adopted as one possible method. However,
when environment contains unknown factors or dynamically
changes, this control strategy will sometimes fail to keep up-
right posture: the posture that is designed in advance is not
sufficient for the current environmental conditions. For ex-
ample, the desk lamp that stably stands on the level desktop
often falls over when the desk tips up. In such situations, the
position of the CoG should be adjusted with the conditions
of the environment. Then, the information on the current en-
vironment has to be detected, in some fashion, to know dif-
ferences from the designing stage, to evaluate the stability
of the body, and to output the control torque for compen-
sating the deviation of the balance originated from unknown
factors.

Among much sensory information, ground reaction forces
provide the useful information for balancing, because the
center of pressure (CoP) of ground reaction forces coincide
to zero moment point 1) that is widely utilized for dynamic
control of walking robot 2). From this point of view, we have
proposed a control method by actuating ankle joint based
on the ground reaction forces 3, 4). Here, the environment
is described as an unknown constant external force, and the
control method makes the body part face to the direction of
the resultant force of the gravity and the external force at
the stationary posture. This implies not only that the station-
ary state changes with the external force, i.e., environmental
conditions, but also that the output of the ankle joint become
zero to keep this posture owing to the balance of gravity and
external force.

In this paper, we extend this control method so that it can
be applied to the environment with periodic external forces.
Because the locomotion shows the periodic bodily move-
ments, the dynamic property of interaction force between
links should be also periodic. Therefore, if the periodic ex-

ternal forces are treated well, it is possible to apply it to the
dynamic locomotion control

2. Upright posture control under con-
stant external force

In this section, we review the control method of upright pos-
ture which was proposed in the previous papers3, 4), since it
become the basis for the control law in the present paper.

Throughout this paper, we consider a 2-link model in the
sagittal plane which contacts to the ground at the two points,
i.e., at the both tips of the foot part, as shown in Fig. 1(a).
Here, we assume that the foot part possesses a symmetrical
shape in the anterior-posterior direction as well as the an-
kle joint is located just above the ground surface. When the
static balance is kept, the foot part does not move and so does
not have dynamics. From the balance of the moment around
the contact points, we can obtain the relationship between
the ankle joint torque and the ground reaction forces:
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Here, FH and FT are the vertical component of the ground
reaction forces at the contact points respectively, m is mass
of the foot part, fy is force acting from the body part that is
given as

fy = −MLθ̈ sin θ − MLθ̇2 cos θ + Mg − Fy. (3)

Subtracting (2) from (1), we get the relation between the an-
kle joint torque and difference of the two ground reaction
force, FH − FT

FH − FT =
1
�
τ. (4)

On the other hand, the motion equation of the body part is
described as that of the inverted pendulum:

Iθ̈ = MgL sin θ + FxL cos θ − FyL sin θ + τ,

= AL sin(θ − θf ) + τ (5)
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Figure 1: Model and stationary posture by proposed control law.

where M is mass of the body part, I is moment of inertia of
the body part around ankle joint, L is distance from the ankle
to CoG of the body part, θ is a sway angle of the body part, τ
is ankle joint torque, g is gravitational acceleration, Fx and
Fy are external force which is assumed constant here, and A
and θf are constants that satisfy the following equations:

A =
√

(Mg − Fy)2 + F 2
x (6)

sin θf = −Fx

A
, cos θf =

Mg − Fy

A
. (7)

Under these problem setting, we define the ankle joint
torque τ as the following equation to make FT and FT take
the same value without falling down:

τ = −Kdθ̇ + Kp(θd − θ) + Kf

∫
(FH − FT )dt. (8)

This control torque produces the stationary posture in which
the gravity and external force are balanced, as illustrated in
Fig. 1(b). The stability of this posture is locally ensured by
the following equations on the feedback gains, Kd, Kp and
Kf :

Kp > AL > 0 (9)

�

I
Kd > Kf > 0 (10)

(Kd� − KfI)Kp > Kd�AL (11)

where � is the distance from ankle joint to the tip of the foot
part. In equations, θ = θf becomes the local stable equi-
librium point of the dynamics defined by (4) and (5), and
FH = FT holds at this stable equilibrium point.

3. Upright posture control under peri-
odic external force

3.1 strategy

The characteristic of the control method in the previous sec-
tion is represented in the feedback of the ground reaction

forces. This method is equivalent to the feedback control
of CoP. It should be noted that ankle joint torque becomes
zero at the stationary state, since the moment of gravity and
external force is balanced around it. This implies that the
feedback of ground reaction force is not necessary any more,
once the stationary state is achieved.

From this point of view, we aim at a posture control
method under the periodic external force such that the feed-
back of ground reaction force is unnecessary after adaptive
learning. Thus, we construct the ankle joint torque as the
summation of the two components: the one compensating
the periodic external force in a feedforward manner and the
one at right hand side of (8) that includes the feedback of
ground reaction forces, like

τ = [F.F ]+
[
−Kdθ̇ − Kpθ + Kf

∫
(FH − FT )dt

]
(12)

For the learning of the feedforward components, we adopt
the framework of the adaptive control proposed by J-J. E.
Slotine and W. P. Li5), which produces the first term of the
right hand side in (12) so that the second term converges to
zero. Here, it is important to define the first term so as not to
contain any feedback information of ground reaction forces.

3.2 Linearization for unknown parameters

Throughout this paper, we assume the period of the periodic
external force Te is known. Under this assumption, the ex-
ternal forces are expanded to the Fourie series whose basic
frequency is the same as that of the external force:
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Here, Sk = sin kωet, Ck = cos nωet and ωe = 2π/Te.
Substituting (13) and (14) into (5), we obtain

Iθ̈ − MgLS −
n∑
k

{
α

(x)
k Sk + β

(x)
k Ck

}
LC

+
n∑
k

{
α

(y)
k Sk + β

(y)
k Ck

}
LS = τ (15)

To simplify the notations, we put C = cos θ and S = sin θ.
We can linearize the left hand side of the above equation for
the unknown parameters:

Y σ = τ (16)
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Here, σ is a vector composed of the unknown parameters,
and Y corresponds to the regressor.



3.3 Control and adaptation law

To evaluate whether the falling-down occurs or not, we have
to consider (4) as well as (16). For these equations, we define
the ankle joint torqe using σ̂, the estimates of the unknown
parameter σ.

τ =
Kd�

Kd� − KfI
Yrσ̂ − Kds (19)

Here, Yr is a known column vector defined by

Yr =
[
θ̈r, S, S0C, C0C,S0S,C0S,

· · · , SnC, CnC, SnS,CnS] , (20)

as θ̇r, a reference velocity is constructed by

θ̇r = −Kp

Kd
θ (21)

Meanwhile, s is a variable defined by the following equation:

s = θ̇ − θ̇r − Kf

Kd
τf , (22)

where τf is a new state variable composed from the feedback
of the ground reaction force,

τf =
∫

(FH − FT )dt (23)

Note that −Kds , the second term of (19) is equal to (8).
In addition to the above control law, the adaptation law is

defined as

˙̂σ = −ΓY T
r s (24)

For the control law (19) and adaptation law (24), we here
show that s converges to zero. As a candidate of the Lyapnov
function, we consider the following function:

V =
1
2
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σ̄T Γ−1σ̄(≥ 0) (25)

where σ̄ = σ̂ − σ. Differentiating (25) by time, we obtain

V̇ = Isṡ + ˙̂σ
T
Γ−1σ̄ (26)

From the definition of Yr, the next equation is satisfied:
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Subtracting (27) from (15), we can get

I(θ̈ − θ̈r) = τ − Yrσ. (28)

On the other hand, (23) turns to

τ̇f =
1
�
τ (29)

by substituting (4) after differentiation. Next, subtracting
IKf/Kd times of (29) from (28)

I(θ̈ − θ̈r − Kf

Kd
τ̇f ) = (1 − IKf

Kd�
)τ − Yrσ (30)

Then, substituting (22), (21) and the control law (19), we
finally obtain

Iṡ = Yrσ̄ − KV s (31)

Here,

KV = (Kd� − KfI)/�. (32)

From (31), (26) becomes

V̇ = sYrσ̄ − KV s2 + σ̄T Γ−1 ˙̂σ
= σ̄T (Y T

r s + Γ−1 ˙̂σ) − KV s2. (33)

However, by using the adaptation law, (24), it finally turns to

V̇ = −KV s2 ≤ 0. (34)

Here, KV becomes positive if the feedback controller based
on ground reaction forces is constructed to satisfy the condi-
tion (9) - (11).

To prove that V̇ converges to 0, we next show the uni-
formly continuity of V̇ . All we have to do is to show the
boundedness of V̈

V̈ = −2KV sṡ (35)

From the fact that V ≥ 0 and V̇ ≤ 0, V is bounded. It
indicates s and σ̄ are bounded. The boundedness of s leads
to the boundedness of θ, θ̇ and τf , while the boundedness
of σ̄ does to the boundedness of σ̂. Based on these bound-
edness, we can show the boundedness of θ̇r from (21) and
the boundedness of Yr from (20). In addition, ṡ is bounded
since I �= 0 in (28). Because of the boundedness of s and ṡ,
V̈ becomes bounded.

Now, using Lyapnov like lemma5), V̇ converges to 0,
which is equivalent that s → 0 in the stationary state.

3.4 Remarks

First of all, the feedback gain of the second term of (19)
should satisfy (9)–(11), which implies that the static balance
is kept under the constant external force, i.e., the special case
of periodic external force with infinite period. Next, in order
that the adaptation law (24) works continuously, the balance
also continues to be kept without falling down. However,
because the stability is σ̂ only locally, a large external force
may make it fall down. The acceptable amplitude of the pe-
riodic external force will be estimated by the (8).
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Figure 2: Definition of external force.
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Figure 3: Results with PD control.

When the stationary state is achieved with this control law,
the ankle joint torque (8) is reconstructed by the weighted
sum of the basis function consisting of each element of Yr,
whose weights, i.e, σ̂ are learned according to the adaptation
law (24). Because each element of Yr does not contain the
feedback of the ground reaction forces, the postural balance
can be maintained without them. If we redefine σ̂ includ-
ing an unknown parameter Kd�/(Kd� − KfI) in (19), the
control law can be constructed without unknown parameters.

Suppose that the maintenance of balance is achieved only
with the second term of (19). This control law is described
with the condition σ̂(0) = 0 and Γ = 0, and is equivalent to
the control law (8). This enable us to infer that the balance is
also kept even if the adaptation law started by setting Γ �= 0,
because the feedback control of ground reaction force is still
effective on the background of the adaptation law. However,
while we have shown that s → 0 according to the adaptation
law, we have not proved yet that this adaptation law never
make it fall down, mathematically. Regarding to this issue,
we will show the validness by the computer simulations at
the next section.

4. Simulation

Using the 2-link model in Fig. 1, we executed computer
simulations. The parameters of the link model are set, M =
2(kg), L = 0.5(m), � = 0.05(m), I = 5ML2/4(kgm2). In
order to compare the control laws, we examined tree cases:
(A) only conventional PD control, (B) (8) that contains the
feedback of ground reaction forces, and (C) (19) – (24) that
contain adaptation law as well as the feedback of ground re-
action forces. We define the periodic external force with the
period 5 (s) as

Fx = Mg sin α (36)

Fy = Mg(1 − cos α) (37)

α =
π

18
sin 2πfet (fe = 0.2(Hz)). (38)

This external force is equivalent to the one that is exerted on
the slope with the gradient α, as illustrated in Fig.2. Namely,
this simulation corresponds to the situation where the gradi-
ent of the floor is oscillate from −π/18 to π/18 with the
period 5 (s). The gains of the control law and other param-
eters are set as follows: (A) Kd = 500, Kp = 1000, (B)
Kd = 500, Kp = 1000, Kf = 25, and (C) Kd = 500,
Kp = 1000, Kf = 25, Γ = diag[0.1, · · · , 0.1], n = 10. The
results are depicted respectively in Fig. 3, Fig. 4 and Fig. 5.

In the case of (A), the ankle joint angle is almost kept to 0
and the body usually faces to the orthogonal direction against
the floor, because of the high feedback gains, as shown in
Fig. 3(a). But, the ground reaction forces depicted in Fig.
3(b) sometimes take negative values, implying that the PD
control practically makes the link system fall down around
the tip of the foot part.

On the other hand, when the feedback of ground reaction
forces added in the case (B), the ankle joint is adjusted ac-
cording to the periodic external forces. As shown in Fig.
4(a), the ankle joint angle becomes almost the same as α be-
cause we define the external force so that the angle made by
the ground surface and resultant force of gravity and exter-
nal force becomes α. Such adjustment of ankle joint angle
prevents the ground reaction forces from taking the negative
values, as shown in Fig. 4(b). This indicates that the position
of CoG of the body part is appropriately shifted based on the
ground reaction forces, which avoids falling down even in
the unknown environment.

Furthermore, the adaptive learning is added in the last sim-
ulation. As depicted respectively in Fig. 5(a), (b) and (c), the
time course of ankle joint angles, ground reaction forces and
total ankle joint torques dose not change so much, indicating
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Figure 4: Results with ground reaction force feedback.

that, even if the adaptation law works, the upright posture
can be maintained in almost the same manner as the case
without it. However, the components that construct the an-
kle joint torque gradually change, as shown in Fig. 5(c): The
second term that contains the feedback of the ground reac-
tion forces are decreaseing, while the first term without them
are increase to finally dominate the ankle joint torque.

These three simulations provide two assertions: First, the
information of the ground reaction forces are essential to
keep the upright posture under the environment that contains
unknown factors. Second, even though environment con-
tains unknown factors, if it is stationary, the upright posture
comes to be maintained without the feedback of ground re-
action force. This is achieved by adaptive learning, which
clarifies unknown factors on the stationary environment.

5. Conclusion

In the present paper, we consider an upright posture control
of biped model under periodic external force with known pe-
riod. In order to maintain upright posture against unknown
external force, it is effective to construct a control law based
on ground reaction forces. However, if the external force is
periodic and its period is known, the upright posture comes
to be maintained without ground reaction forces, since the
unknown factors on environment is clarified during the suc-

cessful posture control. The control scheme is summarized
to the block diagram as depicted in Fig. 6. Using ground
reaction forces, the feedforward controller in a sense that it
does not need the ground reaction force is learned so as to
decrease the output of their feedback controller. Such a feed-
forward controller may be extended to a pattern generator for
the locomotion.

As an example of the periodic external force, we consider
the interaction force exerted from the other links during the
stationary locomotion. In the general strategy of the locomo-
tion control, the motion pattern of each link is often given at
the stage of the motion planning. It implies that the period
of the locomotion have been already decided at this stage.
Thus, this assumption will be valid, if the control method is
applied for the balance control during locomotion.

As the future works, we should consider the extension for
the periodic external forces with unknown period, the appli-
cation of the motion planning of the locomotion and the en-
hancement of the convergence of the feedback control with
the ground reaction forces.
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