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Abstract

Because of the ill-posedness of grasping, one feasible method must be selected from possible

strategies. Among many factors, this paper focuses on the posture of an object: which object

direction is best when it is grasped. Then, the object is assumed to be held with three points where the

contact forces can be generated in any directions. To evaluate the object posture, the norm of contact

force vector consisting of the normal and tangential forces is selected. Consequently, the contact

force becomes minimal when the center of mass of the grasped object and the centroid of the triangle

composed by three contact points are aligned in the gravitational direction.

r 2009 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Grasp is a basic action for every task. Though it is a simple motion, its execution
requires selective decisions of many factors: contact point placements, grasp mechanisms
posture, magnitude or directions of contact forces and so on [1,2]. Despite some conditions
or constraints, many degrees of freedom of grasp mechanisms bring multiple solutions on
these factors.
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For the view point of the ill-posedness, lots of studies have been reported [3,4].
A standard framework for solving ill-posed problem is the optimization whose important
attributes are evaluation functions, factors to optimize and solution algorithm. Although
the norm of the contact force vector is a normal section, other evaluation functions are
sometimes introduced, such as the force that compensates for the gravity [5], the balanced
force with respect to the normalized external force [6,7] or output power for the grasping
mechanisms [8,9]. The external force just before the object starts to move is also an
effective candidate for the evaluation of power grasp [10,11]. On the other hand, the
optimizing factors are widely discussed: the placement of the contact points [5–7],
the posture of the grasping mechanisms [8,9] or the range of the contact point placement
while keeping the force balance in three-dimensional space [12]. As for the methods for
solving the optimization problems on the grasp, linear programmings [13,14], quadratic
programmings [15], artificial neural networks [16,17] and fuzzy logic [18] have been
applied.
Among many optimizing factors, the posture of the grasped object is focused on in this

paper. The posture here means the attitude of the grasped object in the task coordinate
frame—in other words, spacial relation with respect to the gravity. The posture of the
grasped object is usually unconstrained except, e.g., when delivering a glass of water. Thus,
it is worth discussing from the efficiency point of view. However, this issue was not directly
treated in the previous works mentioned above besides our studies [19].
This paper is organized as follows: In Section 2, we describe the problem to consider

clearly under some assumptions for mathematical calculations. Next, the problem is
formulated as a non-linear optimization problem in Section 3. This problem is solved in a
numerical manner at first in Section 4 with examples. Then, the result is extended by
solving the problem in an analytical manner in Section 5. Finally, we conclude this paper in
Section 6.

2. Problem and assumptions

This paper aims at clarifying which object posture is best in the grasp. As an evaluation
of the grasp, the magnitude of the contact forces is focused on here: small contact forces
result in the efficient grasp as well as the avoidance of breaking the grasped object. In
addition, it will provides a pure evaluation of the grasping configurations regardless of the
specification of the grasping mechanisms. Then, the grasping mechanism is implicitly
assumed to move to any direction in the space so as to adjust the object posture, and to
generate the contact force to any directions at each contact points.
In summary, the problem is described as:
�
 Raise up the object from the upper side with three assigned contact points, i.e., the
centroid of the contact-point triangle is located at the higher position than the object’s
center of mass. Then, find the optimal posture of the object in the sense that the contact
forces become minimal.

Under the assumptions that
�
 The object is rigid.

�
 The object’s shape is convex, and smooth at the contact points.



ARTICLE IN PRESS
S. Ito et al. / Journal of the Franklin Institute 346 (2009) 969–979 971
�
 At the contact points, the contact force is generatedin any direction and in any
amount.
The last assumption implies that the object would be held using something like a fixture or
magnetic forces. Regarding to the contact points, the grasp with the smallest number, i.e.,
three [20], of them is treated from the standpoint that extra mechanisms require
unnecessary costs.

The above problem could be solved by use of the manipulability [21], but the spacial
relation of the optimal solution is not sufficiently investigated. The focus of this paper is
placed on clarifying the physical meaning of the optimal posture.
3. Formulation

Grasping tasks are sometimes described in the task coordinate frame, an orthogonal
coordinate frame whose origin is fixed on a point in the task space of the grasp and one of
three orthogonal axes of which is sometimes selected to be parallel to the gravitational
direction. The posture in the task coordinate frame is represented as the relative direction
of the gravity in the object coordinate frame O-XYZ whose origin is set to the center of this
object’ mass. Two parameters, f and y, express this direction: f (0 � f � p=2) is an angle
between the gravitational direction and the negative direction of Z-axis, and y is the
azimuthal angle of the gravitational direction measured from the positive direction of the
X-axis in the X–Y plane, as illustrated in Fig. 1.

The shape of an object is expressed by a convex function f ðx; y; zÞ ¼ 0 defined in the
object coordinate frame. Three points pi ¼ ðxi; yi; ziÞ

T (i ¼ 1; 2; 3) are given on the object
surface f ðx; y; zÞ ¼ 0 as contact points. They never align on the same straight line.
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Fig. 1. Object coordinate frame and contact-point coordinate frame.
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The contact-point coordinate frame Oi-X iY iZi (i ¼ 1; 2; 3) is introduced to express the
contact force as shown in Fig. 1. The origin of this coordinate frame is set to each contact
point and each axis is defined as follows: the normal direction at the contact point pi,
ð@f =@x; @f =@y; @f =@zÞpi

is selected as the Zi-axis, and the Y i-axis is defined to be orthogonal
to both the Zi and the Z-axes. The X i-axis is defined so that Oi-X iY iZi become the
right-handed coordinate frame. In the contact-point coordinate frame, the contact force
Fi ¼ ½Fix;Fiy;F iz�

T is defined at each contact point. F iz is the normal force whereas F ix

and F iy describe the tangential force. The evaluation function is defined using F ¼
½FT

1 ;F
T
2 ;F

T
3 �

T as

V ¼ kFk2 ¼
X3
i¼1

ðF2
ix þ F 2

iy þ F 2
izÞ (1)

in the contact-point coordinate frame.
Though the contact force expression Fi in the contact-point coordinate frame

provides a simple description of the evaluation function as the above, it is convenient
to describe the force balance equation in the object coordinate frame. Thus, Fi

is transformed to f i, the expression in the object coordinate frame, using a transform
matrix Ti.

f i ¼ TiF i (2)

Here, let xi to be the angle made at the meeting of the Z-axis and the Zi-axis, as well as Zi

to be the azimuthal angle made at the meeting of the Zi-axis and the X-axis in the X–Y

plane, as shown in Fig. 1. Then, Ti is obtained from the combined transformation, i.e., the
xi-rotation around X i-axis, rotðX i; xÞ, before the (Zi þ p=2)-rotation around Zi-axis,
rotðZi; Zi þ p=2Þ:

Ti ¼ rotðZi; Zi þ p=2Þ � rotðX i; xÞ

¼

cosðZi þ p=2Þ � sinðZi þ p=2Þ 0

sinðZi þ p=2Þ cosðZi þ p=2Þ 0

0 0 1

2
664

3
775 �

1 0 0

0 cos xi � sin xi

0 sin xi cos xi

2
664

3
775

¼

� sin Zi � cos Zi cos xi cos Zi sin xi

cos Zi � sin Zi cos xi sin Zi sin xi

0 sin xi cos xi

2
664

3
775 (3)

Now, the force balance equation is given at the object coordinate frame as follows:

Lf ¼M (4)

Here, L 2 R6�9 is a grasp matrix given by

L ¼
I3 I3 I3

R1 R2 R3

" #
(5)
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where I3 2 R3�3 is a unit matrix and Ri 2 R3�3 is a skew-symmetrical matrix determined
by the position of the contact point:

Ri ¼

0 �zi yi

zi 0 �xi

�yi xi 0

2
64

3
75 (6)

f ¼ ½f T
1 ; f

T
2 ; f

T
3 �

T is a contact force vector. M is a vector given by

M ¼ ½Mx My Mz 0 0 0�T (7)

Mx ¼Mg cos y sinf (8)

My ¼Mg sin y sinf (9)

Mz ¼Mg cosf (10)

that denoting the direction of the gravitational force. Here, M is the mass of the object and
g is the gravity acceleration.

The purpose here is to find the solution of the force balance equation (4) that minimize
the evaluation function (1). Note that the solution of the force balance equation depends
on both f and y. Namely, this is an optimization problem of the contact force vector by
selecting the object posture f and y, i.e., the angles y and f are the variables to optimize.

4. Numerical analysis by case studies

4.1. Introduction of numerical analysis

The solution of Eq. (4) is represented with Ly, the pseudo-inverse matrix of L [22] as

f ¼ LyM þ ðI9 � LyLÞp (11)

where I9 2 R9�9 is a unit matrix, and p 2 R9 is an arbitrary vector. The second term can be
expressed using the unit vectors eij 2 R3 ði; j ¼ 1; 2; 3Þ given as

eij ¼
pi � pj

kpi � pjk
(12)

Namely,

ðI9 � LyLÞp ¼

0 e13 e12

e23 0 e21

e32 e31 0

2
64

3
75

a1
a2
a3

2
64

3
75 ¼ LNa (13)

where each ai correspond to the magnitude of the internal forces [23]. These internal forces
do not affect the object motions because they cancel each other, while the first term of
Eq. (11) actually balance the gravity effect. Accordingly, the solutions of Eq. (4) are
represented by

f ¼ ðLyM þ LNaÞ (14)
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Among these solutions, the optimal one that minimizes the evaluation function (1) must
be selected. From Eq. (2), F is given by

F ¼ T�1ðLyM þ LNaÞ (15)

where

T ¼ diag½T1;T2;T3� (16)

Thanks to the orthogonality between Ly and LN as well as T�1 ¼ TT , the evaluation
function becomes

V ¼MT ðLLT Þ
�1M þ kak2 (17)

Obviously, the smaller the norm of a is, the better the evaluation function becomes. This is
a reason why a is assumed to be zero, which enables the following analyses to be restricted
to finding the optimal angle f and y regardless of the magnitude of a.
However, the straightforward analysis is difficult due to the complexity of high

dimensional calculations. Thus, some case studies are firstly examined to make an
induction of a general conclusion.
4.2. Contact points constructing an equilateral triangle

Consider the case where the contact points are given as follows:

p1 ¼ ð6 � 2
ffiffiffi
3
p

4ÞT (18)

p2 ¼ ð�6 � 2
ffiffiffi
3
p

4ÞT (19)

p3 ¼ ð0 4
ffiffiffi
3
p

4ÞT (20)

Note that these three points construct an equilateral triangle (Fig. 2a). Then, the
evaluation function becomes

V ¼
ðMgÞ2

9
ð5� 2 cos2 fÞ (21)

Thus, the angles that minimize this evaluation function, i.e., the solution of @V=@f ¼ 0 is

f ¼ 0 (22)

This result implies that the axis of gravitational force from the center of object’s mass goes
through one of the following points: incenter, circumcenter, orthocenter or centroid of the
equilateral triangle.
4.3. Contact points constructing an isosceles right triangle

Consider the case where the contact points are given as follows:

p1 ¼ ð4
ffiffiffi
3
p

0 4ÞT (23)

p2 ¼ ð�4
ffiffiffi
3
p

0 4ÞT (24)
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Fig. 2. Examples of contact-point triangle: (a) equilateral triangle, (b) right isosceles triangle, and (c) general case.
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p3 ¼ ð0 4
ffiffiffi
3
p

4ÞT (25)

Note that these three points construct an isosceles right triangle (Fig. 2b). Then, the
evaluation function becomes

V ¼
ðMgÞ2

24
ð13 cos2 y sin2 fþ 20 sin2y sin2 f� 8

ffiffiffi
3
p

sin y sinf cosfþ 12 cos2 fÞ

(26)
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For minimization, put the derivative of V to zero as

@V

@y
¼
ðMgÞ2

24
ð14 cos y sin y sin2 f� 8

ffiffiffi
3
p

cos y sinf cosfÞ ¼ 0 (27)

@V

@f
¼ �

ðMgÞ2

12
ð7 cos2 y sinf cosf� 8 cosf sinf

þ 8
ffiffiffi
3
p

sin y cos2 f� 4
ffiffiffi
3
p

sin yÞ ¼ 0 (28)

Solving the above two simultaneous equations, we obtain the solution

ðy;fÞ ¼ �
p
2
;
p
6

� �
(29)

This result implies that the axis of gravitational force from the center of object’s mass goes
through the centroid of the isosceles right triangle.

5. Mathematical analysis and result

Two case studies in Sections 4.2 and 4.3 provide a suggestive result: if the line from
center of object’s mass to the direction of the gravitational force passes the centroid of the
triangle composed by three contact points, then the norm of the contact force vector
becomes minimal. In this section, we aim at generalizing this numerically induced result for
arbitrary placements of contact points.
At first, the object coordinate frame is reset so that the Z-axis goes through the centroid

of the contact-point triangle (Fig. 2c). The contact points are re-defined in the new
coordinate frame:

p1 ¼ ðx1 y1 z1Þ
T (30)

p2 ¼ ðx2 y2 z2Þ
T (31)

p3 ¼ ðx3 y3 z3Þ
T (32)

Here, the following relations hold:

x1 þ x2 þ x3 ¼ 0 (33)

y1 þ y2 þ y3 ¼ 0 (34)

z1 þ z2 þ z340 (35)

Eq. (35) ensures that the object is hold from the upper side.
Then, the matrix LLT in Eq. (17) is given as

LLT ¼

3 0 0 0 Z 0

0 3 0 �Z 0 0

0 0 3 0 0 0

0 �Z 0 a l k

Z 0 0 l b n

0 0 0 k n g

2
6666666664

3
7777777775

(36)
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where

Z ¼ z1 þ z2 þ z3 (37)

a ¼ y2
1 þ y2

2 þ y2
3 þ z21 þ z22 þ z23 (38)

b ¼ z21 þ z22 þ z23 þ x2
1 þ x2

2 þ x2
3 (39)

g ¼ x2
1 þ x2

2 þ x2
3 þ y2

1 þ y2
2 þ y2

3 (40)

l ¼ �x1y1 � x2y2 � x3y3 (41)

k ¼ �z1x1 � z2x2 � z3x3 (42)

n ¼ �y1z1 � y2z2 � z3y3 (43)

Next, the evaluation function becomes

V ¼
ðMgÞ2

E0
ðE1 cos

2 y sin2 fþ E2 cos
2fþ E3 cos y sin y sin2 fþ E4Þ (44)

Here, Ek (k ¼ 0; . . . ; 4) is a constant that is determined by xi, yi, zi (i ¼ 1; 2; 3) (see
Appendix). From the conditions @V=@f ¼ 0 and @V=@y ¼ 0, the following equations are
obtained:

ðMgÞ2 sin2 f
E0

ð�E1 sin 2yþ E3 cos 2yÞ ¼ 0 (45)

ðMgÞ2 sinf cosf
E0

ðE1 cos 2yþ E3 sin 2yþ E1 � 2E2Þ ¼ 0 (46)

There are two possible cases, i.e., sinf ¼ 0 or the case where the following two equations
simultaneously hold:

�E1 sin 2yþ E3 cos 2y ¼ 0 (47)

E1 cos 2yþ E3 sin 2yþ E1 � 2E2 ¼ 0 (48)

The latter case, however, has no solutions since sin 2y and cos 2y must satisfy the third
equation:

sin2 2yþ cos2 2y ¼ 1 (49)

Thus, the solution of two simultaneous Eqs. (45) and (46) is

f ¼ 0 ðy is arbitraryÞ (50)

When f ¼ 0, the direction of gravitational force coincides with the Z-axis that goes
through the centroid of the contact-point triangle.

The result of the above analysis is summarized to the following theorem.

Theorem. Consider that a rigid and convex object is hold with three contact points. If contact

force can be generated in any direction at each contact point, then the squared sum of the

contact forces takes minimum at the object posture where the centroid of contact-point

triangle and the center of mass of the object are aligned in the gravitational direction.
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6. Conclusion

In this paper, the posture of the grasped object that minimizes the contact forces is
discussed when the object is held up with three contact points given in advance. The
squared norm of the contact force vector whose component is the normal or tangential
force at each contact point is selected as the evaluation function. Assuming that the
contact force acts in any direction, the following results are obtained with respect to
convex and rigid objects:
�
 The posture in which the centroid of the triangle composed of three contact points and
the center of the object’s mass are aligned in the gravitational direction becomes
optimal.

The contribution of this paper is to describe the spacial relation of the optimal object’s
posture from the physical point of view. These results are not different from our intuition.
Though the result may seem obvious, it is meaningful to have ensured the rightness of our
intuition mathematically.
The above result is derived neglecting the internal forces since zero internal forces make

contact forces smallest. However, usual grasp by hand utilizes the friction forces, where the
effect of internal forces increases the normal forces not to slip out the grasped object. As
future works, we will examine the grasping action with friction and next consider the
manipulation of an object with friction.

Appendix A. Derivation of (44)

Let L ¼ ðLLT Þ
�1, and Lij denotes the i-column j-row element of the matrix L. Because L

is symmetrical matrix and L13 ¼ L23 ¼ 0,

V ¼MT ðLLT Þ
�1M

¼ ðMgÞ2ðL11 cos
2 y sin2 fþ 2L12 cos y sin y sin2 fþ L22sin

2 y sin2 fþ L33cos
2 fÞ

¼ ðMgÞ2½ðL11 � L22Þ cos
2 y sin2fþ ðL33 � L22Þ cos

2 f

þ 2L12 cos y sin y sin2 fþ L22� (A.1)

Thus, let E0 ¼ detðLLT Þa0, then E1 ¼ ðL11 � L22ÞE0, E2 ¼ ðL33 � L22ÞE0, E3 ¼ 2L12E0

and E4 ¼ L22E0.
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