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Abstract— When grasping an object, friction forces are some-
times utilized. Because of this friction forces, the object is
manipulable to various direction. In this paper, we discuss which
direction is best when contact points, the number of which
is two in the 2D-space grasping or three in the 3D one, are
assigned. To evaluate the object direction, we focus on the norm of
contact forces consisting of the normal forces and friction forces.
We conclude that the norm of contact force become minimal
when vertical line through the center of mass of the object (i.e.,
gravitational line) shoots out the midpoint of two contact points in
2D space, while it does the centroid of the contact-point triangles
in 3D space.

Index Terms – Grasping, Contact forces, Object direction,
Optimization

I. INTRODUCTION

Grasping is one of important motions for robots to achieve
given tasks such as conveying, assembling, and manipulating
objects. When grasping an object, humans sometimes utilize
friction forces. Although this grasping method lacks the re-
liability from the aspect of fixing the object in comparison
with the power grasping method [1], it has a possibility to
manipulate the object speedy and skillfully.

From this point of view, we consider the following problem
for grasping using friction.

• When the contact points are assigned on the object
surface for grasping, which direction of the object is
optimal.

There are many optimizing factors for grasping because
of the redundancy of this task: position of contact points,
internal forces, finger joint torques and so on [2]. Especially,
the problem of contact points is significant for automatic
realization of grasping tasks, and so many studies treat this
problem[3], [4], [5]. However, we often encounter cases where
the position of the grasping points are restricted. For example,
when we paint the object, limited parts of the surface are
allowed for touching. If a part of object is fragile, other rigid
parts must be chosen for grasping. Mechanical conditions such
as the size of the hand are also the factors that restrict the
contact points for large grasped objects. Putting these cases
together, we set the problem for grasping so that a prehensible
set of contact points are assigned.

Some optimizing factors such as finger joint torques depend
on the structure of the end-effectors. However, there are some

factors which are independent of the end-effectors. One of
them is the direction of the grasped object. Actually, there will
be a case where the attitude of the object must be maintained,
e.g., moving a cup which is filled with liquid. In many cases,
however, we can select their attitude or direction freely. Thus,
the direction of the grasping object is a problem to be solved
for realizing a automatic handling, but the optimization of the
grasped object is not discussed so much in the previous studies.

For the first step, we here treat a static grasping with friction.
As a evaluation of the grasping, the norm of the contact forces
is selected, because smaller contact forces not only achieves an
efficient grasping by use of the small grasping forces but also
provides less possibility for object to be broken. Throughout
this paper, we set the following assumptions on the object.

• An object is rigid.
• The positional relation between the center of mass and

contact points is known.
• The contact is limited to the point contact with friction[6].
• At the contact points, the shape of the object is smooth.
• Sufficient large frictions act on the surface of the object.

Note that the last assumption implies that the friction corn
conditions are not considered. Namely, the problem here is
what will be the optimal direction of grasped object if this
object is prehensible by the given contact points.

Firstly, we consider a case of the grasping in the 2D plane
including the gravitational direction. Next we extend the result
here to three-dimensional case. As for the number of the
contact points, the least case is considered here: two contact
points in the 2D grasping and three in the 3D grasping. Indeed,
more contact points make it easier to grasp an object. However,
the less contact points will be required when manipulating it
within one end-effector (hand).

II. 2D GRASPING IN THE VERTICAL PLANE

To begin with, we introduce a simple case study where the
object is a rectangle. Next, we extend the conclusion here to
any convex objects.

A. Rectangular object

The homogeneous rectangular is grasped by two points on
the adjacent edges using the friction. As shown in Fig. 1(a),
the distance from one vertex to contact points are r1(< L1)
and r2(< L2), where L1 and L2 is the length of the edges of
the rectangular object. The problem is to find attitude angle
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Fig. 1. Grasping of a rectangular object

of object from the gravitational direction under the evaluation
on the contact forces.

This problem becomes accessible by means of introducing
the object coordinate frame as shown in Fig. 1(b). The origin
of the object frame is set to the center of mass, and two
coordinate axes are parallel to two edges containing the contact
points. The object attitude in the task coordinate frame is
expressed as the direction of the gravity in the object frame,
which is denoted as the clockwise angle θ from the y axis. To
restricting the grasping only to the pinching up one, we can
restrict θ in the range 0 ≤ θ ≤ π/2.

The balance of the forces and moments in the stable
grasping are described by the equation,

LF = M (1)

Here, L is a grasping matrix given as

L =





1 0 0 1
0 1 1 0

L1

2
− r1

L2

2
−L2

2
+ r2 −L1

2



 (2)

F is a unknown contact force vector whose components are
the normal force Ni and friction force Fi (i=1,2), i.e.,

F =
[

N1 F1 N2 F2

]T
(3)

and M is given as

M =
[

−Mg sin θ −Mg cos θ 0
]T

(4)

representing the action of the gravity, where M is a mass of
the object and g is a constant of gravitation.

The solution of the equation (1) can be written as

F = F T (θ) + αF N (5)

where
F T (θ) = L†M(θ) (6)

L† is a pseudo-inverse matrix of L [7], F N is a unit vector
in the null space of L, i.e.,

LF N = 0 (7)

and α is a scalar corresponding to the amount of the internal
forces.

Among the solutions of the equation (1), we select the one
which minimizes the following evaluation function V

V = F T F . (8)

Substituting (8) for (5), we obtain

V = ||F T (θ)||2 + α2||F N ||2 (9)

Apparently, the smaller the α is, the better this evaluation
function becomes.

Regarding to the object direction, we differentiate V with
respect to θ

∂V

∂θ
=

∂

∂θ

{

MT (θ)(L†)T L†M(θ)
}

=
(

(−2L1L2 + 2L1r2 + 2r1L2 − 2r1r2) cos2 θ

+((L1 − r1)
2 − (L2 − r2)

2) cos θ sin θ

+L1L2 − L1r2 − r1L2 + r1r2)
Mg2

(r2

1
+ r2

2
)

(10)

Solving the equation ∂V
∂θ

= 0 in the range 0 ≤ θ ≤ π/2, the
minimum point of V is given as

θ∗ = tan−1

(

L2 − r2

L1 − r1

)

. (11)

The object attitude of this solution is illustrated in Fig. 1(c).

B. Convex object with smooth shape

The shape of object is assumed to be given as a known
function f(x, y) = 0 in the object coordinate frame. The
function f(x, y) is assumed differentiable at the given two
contact points p

1
= (x1, y1)

T and p
2

= (x2, y2)
T ( 6= p

1
). The

question is which direction of the object makes contact forces
minimal. Note that, f(x1, y1) = f(x2, y2) = 0 are satisfied.

The result of the previous case study implies that, at the
optimal attitude, the midpoint of two contact points lies on the
vertical line through the center of mass of the object. Actually,
it can be generalized as the following theorem:

Theorem 1: Consider the case when the convex object is
grasped in the planer plane including the gravitational direc-
tion with two contact points. Then, the square norm of contact
forces takes minimum when the midpoint of two contact



points and the center of mass of the object are aligned on
the gravitational direction.

Proof: As is the same as in the previous section, the
effect of the gravity is expressed in the object coordinate
frame. Setting the direction of the gravity θ clockwise from
the negative direction of y axis in the object coordinate frame,
this effect is denoted by a vector M as

M = M(θ) =
[

−Mg sin θ −Mg cos θ 0
]T

(12)

Here, we try to find the optimal θ that minimizes the norm of
contact forces.

In order to consider the effect of the object shape, we put
the angle between the normal line at the contact point and x
axis of the object frame to φi as shown in Fig. 2(a). This φi

is uniquely determined from the object shape f(x, y) = 0 as

φi = arctan 2

(

(

∂f

∂y

)

pi

,

(

∂f

∂x

)

pi

)

. (13)

Then, the balance of the contact forces (3) and gravitational
force (12) is expressed as the same equation (1) as the case
of the rectangular object, where the grasping matrix L is
described with φ as

L =





cosφ1 − sin φ1 cosφ2 − sin φ2

sin φ1 cosφ1 sin φ2 cosφ2

L31 L32 L33 L34



 (14)

L31 = −x1 sin φ1 + y1 cos φ1 (15)
L32 = −x1 cos φ1 − y1 sin φ1 (16)
L33 = −x2 sin φ2 + y2 cos φ2 (17)
L34 = −x2 cos φ2 − y2 sin φ2 (18)

We solve the equation (1) under the evaluation function (8).
This solution can be described in the form as (5). Since

∂V
∂α

= 0 implies α = 0, the smaller internal force provides the
better evaluation. However, our concern is the object direction
θ that minimizes V . Using (6), (7) and the relation

L† = LT (LLT )−1 (19)

the evaluation function becomes

V = MT (LLT )−1M + α2 (20)

where

LLT =





2 0 −Y
0 2 X

−Y X λ



 (21)

X = x1 + x2 (22)

Y = y1 + y2 (23)

λ = x2

1
+ x2

2
+ y2

1
+ y2

2
(24)

Calculating (LLT )−1 and substituting (20), we finally obtain

V =
(Mg)2

∆
(2λ − [X sin θ + Y cos θ]2) + α2 (25)
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Fig. 2. Grasping of a convex object

where
∆ = 2((x1 − x2)

2 + (y1 − y2)
2) 6= 0 (26)

At the optimal posture θ = θ∗,
[

X
Y

]

//

[

sin θ∗

cos θ∗

]

(27)

is satisfied. Because the midpoint of two contact points is
(X/2, Y/2), the vector [sin θ∗, cos θ∗]T points to the opposite
direction of the gravity, as illustrated in Fig. 2(b). Thus, the
theorem have been proved.

Note 1: This result is satisfied regardless of the object
shape. And, when the midpoint of two contact points coincides
the center of mass of the object, both X and Y becomes
zero. Then, the norm of the contact forces become the same
regardless of the object direction.

III. GRASPING IN 3D SPACE

The theorem in the previous section is applicable only to
the grasping in 2D space. Here, we extend it 3D space.

A. Assumptions and problem setting

We set the following assumptions on the shape of the
grasped object:

• The shape of an object is assumed to be expressed by
the known convex function f(x, y, z) = 0 in the object
coordinate frame O-XY Z whose origin is set to the
center of mass of this object.

• Three contact points are given as pi = (xi, yi)T (i =
1, 2, 3), which are not aligned on the same straight line.

• The shape of the contact points are smooth, i.e., f(x, y, z)
is differentiable at pi.

Then, the question is which attitude of the grasped object
makes the contact forces minimal. This attitude in the task



coordinate frame is represented as the direction of the gravity
in the object coordinate frame. We express this direction using
two parameters φ and θ, where φ (0 ≤ φ ≤ π/2) is the angle
between the gravitational direction and the negative direction
of Z axis, and θ is the azimuthal angle of the gravity from the
X axis in the X-Y plane, as illustrated in Fig. 3. Putting the
contact force vector to f , the problem is formulated as follows:
Find the optimal φ and θ that minimize the evaluation function

V = fT f (28)

from the set of the angles satisfying the static balance of
grasping.

B. Analysis

In order to express the contact forces, we introduce the
contact-point coordinate frame Oi-XiY iZi whose origin
is set the contact point pi. As shown in Fig. 3 the Zi

is set to the normal direction of the surface at pi, i.e.,
(∂f/∂x, ∂f/∂y, ∂f/∂z)pi and the Y i axis is set to the
direction orthogonal to Zi axis within the plane containing
both the Zi axis and the line through pi parallel to the Z
axis. The Xi axis is set so that Oi-XiY iZi become the right-
handed coordinate system. The relation between the object and
contact-point coordinate frame is expressed by two parameters
ξi and ηi, where ξi is the angle between the Z axis and the
Zi axis, and ηi is the azimuthal angle of the Zi axis from the
X axis in the X-Y plane, as shown in Fig. 3

The contact force is expressed in the coordinate frame
Oi-XiY iZi as f i = (f i

x, f i
y, f i

z)
T , where the magnitude

of normal force and the friction are respectively fz and
√

(f i
x)2 + (f i

y)2. f i can be transformed to the contact force

vector in the object coordinate frame, i.e., F i = (F i
x, F i

y, F i
z)

T

using the transform matrix T i:

F i = T if i (29)

where

T i =





− sin ηi − cos ξi cos ηi sin ξi cos ηi

cos ηi − cos ξi sin ηi sin ξi sin ηi

0 sin ξi cos ξi



 (30)

Now, we consider the static balance of the grasping object
in the object coordinate frame. The contact force vector F in
the object frame is defined as F = [F 1T

,F 2T
,F 3T

]T . Then,
the static balance is described as

LF = M (31)

Here, M denote the action of gravity

M =
[

Mx My Mz 0 0 0
]T

(32)

Mx = Mg cos θ sinφ (33)

My = Mg sin θ sinφ (34)

Mz = Mg cos θ (35)
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Fig. 3. Contact-point coordinate frame.

The Matrix L ∈ R6×9

L =

[

I3 I3 I3

R1 R2 R3

]

(36)

where I3 ∈ R3×3 is a unit matrix and Ri ∈ R3×3 is a skew-
symmetrical matrix determined by the position of the contact
point:

Ri =





0 −zi yi

zi 0 −xi

−yi xi 0



 . (37)

The solution of (31) is represented with the pseudo-inverse
matrix of L, i.e., L† [7] as

F = L†M + (L†L − I9)p (38)

where I9 ∈ R9×9 is a unit matrix, and p ∈ R9 is an arbitrary
vector. The second term can be expressed using the orthogonal
unit vectors ei ∈ R6(i = 1, 2, 3) that spanning the null space
of L as

(L†L − I9)p = LNα (39)

Here, LN = [ e1 e2 e3 ] and α = [ α1 α2 α3 ]T .
Each αi correspond to the magnitude of the internal force.
Accordingly, the solutions of the equation (31) are represented
in the form as

F = (L†M + LNα) (40)

Among these solutions, we find the optimal one that mini-
mizes the evaluation function (28). Here, the contact vector in
the coordinate frame Oi-XiY iZi, i.e., f = [ f1 f2 f3 ]T

becomes
f = T−1(L†M + LNα) (41)

where
T = diag[T 1, T 2, T 3] (42)



Thanks to the orthogonality between L† and LN as well as
T−1 = TT , (28) becomes

V = MT (LLT )−1M + ||α||2 (43)

From the same discussion as the previous section, the smaller
α provides the better evaluation. So, the subsequent analysis
is limited to find the optimal angle φ and θ. However, the
straightforward analysis is difficult due to the high dimension.
Thus, we firstly examine some case studies to make an
induction of a general conclusion.

1) Contact points constructing an equilateral triangle:
Consider the case where the contact points are given as
follows:

p
1

= ( 6 −2
√

3 4 )T (44)

p
2

= ( −6 −2
√

3 4 )T (45)

p
3

= ( 0 4
√

3 4 )T (46)

Then, the evaluation function becomes

V =
(Mg)2

9
(5 − cos φ) (47)

Thus, the angles that minimize this evaluation function, i.e.,
the solution of ∂V

∂φ
= 0 is:

φ = 0 (48)

This result implies that the line of gravity from the center of
mass of the object runs through any one of the incenter, the
circumcenter, the orthocenter or the centroid of the triangle
composed by three contact points.

2) Contact points constructing an isosceles right triangle:
Consider the case where the contact points are given as
follows:

p
1

= ( 4
√

3 0 4 )T (49)

p
2

= ( −4
√

3 0 4 )T (50)

p
3

= ( 0 4
√

3 4 )T (51)

Then, the evaluation function becomes

V =
(Mg)2

24
(13 cos2 θ sin2 φ + 20 sin2 θ sin2 φ

−8
√

3 sin θ sin φ cosφ + 12 cos2 φ) (52)

For minimization, put the derivative of V to zero as

∂V

∂θ
=

(Mg)2

24
(14 cos θ sin θ sin2 φ

−8
√

3 cos θ sin φ) = 0 (53)

∂V

∂φ
= − (Mg)2

24
(7 cos2 θ sin φ cosφ − 8 cos φ sin φ

+8
√

3 sin θ cos2 φ − 4
√

3 sin θ) = 0 (54)

Solving the above two simultaneous equations, we obtain the
solution

(θ, φ) =
(

−π

2
,
π

6

)

(55)
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Fig. 4. Examples of contact-point triangle.

This result implies that the line of gravity from the center of
mass of the object runs through the centroid of the triangle
composed by three contact points.

3) General case: The above two case studies provide a
suggestive result: if the gravity passes the centroid of the
triangle composed by three contact points, then contact forces
becomes minimal. However, the above two cases are specific
in that the contact points construct the equilateral or isosceles
right triangle. In addition, the line passing the centroid of the
contact-point triangle is orthogonal to the plane containing this
triangle.

Thus, we try to remove these special conditions. At first,
we reset the object coordinate frame so that the Z axis passes
the centroid of the contact-point triangle. This new coordinate



system are used in the remaining section,
In the new coordinate frame, the contact points are given

as follows:

p
1

= ( x1 y1 z1 )T (56)

p
2

= ( x2 y2 z2 )T (57)

p
3

= ( x3 y3 z3 )T (58)

Here, owing to the definition of the coordinate system, the
following relations are satisfied;

x1 + x2 + x3 = 0 (59)
y1 + y2 + y3 = 0 (60)
z1 + z2 + z3 > 0 (61)

Here, (61) is a condition for pinching up grasping, because,
in this case, the centroid of contact-point triangles must be
located at the higher position that the center of mass.

Then, the matrix LLT in (43) becomes

LLT =

















3 0 0 0 Z 0
0 3 0 −Z 0 0
0 0 3 0 0 0
0 −Z 0 α λ κ
Z 0 0 λ β ν
0 0 0 κ ν γ

















(62)

Z = z1 + z2 + z3 (63)
α = y2

1
+ y2

2
+ y2

3
+ z2

1
+ z2

2
+ z2

3
(64)

β = z2

1
+ z2

2
+ z2

3
+ x2

1
+ x2

2
+ x2

3
(65)

γ = x2

1
+ x2

2
+ x2

3
+ y2

1
+ y2

2
+ y2

3
(66)

λ = −x1y1 − x2y2 − x3y3 (67)
κ = −z1x1 − z2x2 − z3x3 (68)
ν = −y1z1 − y2z2 − z3y3 (69)

Then, the evaluation function becomes

V =
(Mg)2

E0

(E1 cos2 θ sin2 φ

+E2 cos2 φ + E3 cos θ sin θ sin2 φ + E4) (70)

Here, Ek (k = 0, · · · , 4) is a constant which determined by
xi, yi, zi (i = 1, 2, 3). Calculating ∂V

∂φ
= 0 and ∂V

∂θ
= 0, we

obtain the following equations

(Mg)2 sin2 φ

E0

(−E1 sin 2θ + E3 cos 2θ) = 0 (71)

(Mg)2 sinφ cos φ

E0

(E1 cos 2θ + E3 sin 2θ + E1 − 2E2) = 0

(72)
The two cases are possible for the solution, i.e., sinφ = 0 or

−E1 sin 2θ + E3 cos 2θ = 0 (73)

E1 cos 2θ + E3 sin 2θ + E1 − 2E2 = 0. (74)

However, the latter rarely hold since sin 2θ and cos 2θ must
satisfy the third equation:

sin2 2θ + cos2 2θ = 1 (75)

Thus, generally speaking, the solution of the above two
simultaneous equations is

φ = 0 (θ is arbitrary) (76)

When φ = 0, the direction of gravity coincide with the Z axis,
which pass the centroid of the contact-point triangle.

From this result, we obtain the following theorem.
Theorem 2: The prehensible set of three contact points are

assigned on the surface of the object in the 3D space. The
object is assumed to be convex, and to be smooth at these
contact points. Then, the norm of the contact forces takes
minimum at the object attitude where the centroid of contact-
point triangle and the center of mass of the object are aligned
on the gravitational direction.

IV. CONCLUSION

In this paper, we treated the following problem on the object
grasping: when a prehensible set of contact points are assigned
for grasping, which attitude angles make contact forces small.
Assuming the convexity of the object, its smooth shape at the
contact points and large friction on its surface, we derived the
following results on the optimal object attitude that minimizes
the square norm of contact forces:

• In 2D space, the midpoint of two contact points and
the center of mass of the object are aligned on the
gravitational direction.

• In 3D space, the centroid of contact-point triangle and
the center of mass of the object are aligned on the
gravitational direction.

In the analysis, we did not treat friction corns well. As a
future work, we extend our result to consider them as well as
the roll of the inertial forces.

REFERENCES

[1] X. Y. Zhang, Y. Nakamura, K. Goda, K. Yoshimoto: Robustness of
Power Grasp. Proc. of ICRA1994: 2828-2835, 1994

[2] K. B. Shimoga: Robot Grasp Synthesis Algorithms: A Survey, I. J of
Robotics Research, 15 (3), 230-266, 1996

[3] V. D. Nguyen: Constructing Force Closure Grasp, I. J of Robotics
Research, 7 (3), 3–16, 1989

[4] X. Markenscoff and C. H. Papadimitriou: Optimal Grip of a Polygon,
I. J of Robotics Research, 8 (2), 17–29, 1989

[5] T. Watanabe and T. Yoshikawa: Optimization of Grasping by Using a
Required External Force Set, Proc. of ICRA2003, 1127–1132, 2003.

[6] T.Yoshikawa et al.: Foundations of Grasping and Manipulation (in
Japanese), J. of Robotic Society of Japan,Vol.13-Vol.14, 1995

[7] H. Kodama and N. Suda: Matrix theorem for system control (in
Japanese), Society of Instrument and Control Engineers. 1978


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber: 
	0: 
	22869480894972244: 1588
	21392030290657205: 1589
	8528339072705493: 1590
	723162293395534: 1591
	34118111078074304: 1592
	5593610230601058: 1593


	TL1: 
	0: 
	14399952764245166: Proceedings of the 2006 IEEE/RSJ


	TL2: 
	0: 
	11430238973305701: International Conference on Intelligent Robots and Systems


	TL3: 
	0: 
	5021202675877778: October 9 - 15, 2006, Beijing, China




