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Abstract

Several forces are always exerted to the locomotion
systems such as inertial forces, gravitational forces,
and ground reaction forces. Among them, we here fo-
cus on the ground reaction forces to consider the bal-
ance control of the simple two-link model in the sagit-
tal plane, which contains one actuator at the ankle and
two force sensors on the sole. To keep the balance, it
is necessary that the ground reaction forces are kept
positive at both ends of the foot, i.e., heel and toe. To
achieve it, we design two control laws for each ground
reaction force. By alternatively switching them, the
standing posture can be maintained. Examining the
behavior in the phase plane, the stability of the con-
trol laws are considered. Furthermore, we also study
the posture changes by the stationery external forces in
the horizontal direction. Introducing the torque input
changing with large time scale, we realize the postural
adjustment whereby the body is adaptively inclined to
the opposite direction of the external force. By com-
puter simulations, we confirm the convergence of such
a posture adjustment.

1 Introduction

Legged systems take an advantage in the point that
they can walk on the irregular ground where wheeled
systems cannot move. However, such a fascinating
ability is not realized without the advanced balance
control. Thus, the balance control has been discussed
as a main problem of locomotion systems. Especially,
biped locomotion models are widely examined, be-
cause there is a small number of the legs to use for
the balance keeping and so the possibility of tumbling
is higher than any other multi-legged systems.
Broadly speaking, there are two powerful methods

for balance control of biped system. One pays an at-
tention to supporting leg exchanges[1]. The biped sys-
tem may tumble in a moment, but, by exchanging the

supporting legs before completely falling flat to the
ground, the locomotion is dynamically maintained.
This method is mostly applied to the one with free
ankle joint. The other follows the zero moment point
(ZMP) criterion [2]. The ZMP is a point on the level
ground, where the total torque generated by both iner-
tial and gravitational forces becomes zero. If the ZMP
exists under the foot, the locomotion system does not
tumble. Thus, the desired motions are planned so that
the ZMP criterion is satisfied, and then the controller
is designed to realize such desired motions.
As found in the ZMP definition, the balance nat-

urally depends on the relation among forces exerting
to the locomotion system and thus many works pay
attentions to them: some compensate the actual ZMP
according to the force measurement (e.g. [3]) or some
design the impedance around the desired leg’s position
(e.g. [4]). However, these are fundamentally based
on the positional information (i.e. ZMP trajectory
or impedance center) and so do not directory control
forces. From such a point of view, we focus the force
control to keep the balance, i.e., regard ground reac-
tion forces as controlled variables. To begin with, we
limit the problem of the standing posture control. It is
an important issue since the standing is the first step
of locomotion.

2 Control of ground reaction forces

2.1 Simple link model

The stability of the locomotion system is deter-
mined by the positional relation between ZMP and
a support pattern [5]. The support pattern is a con-
vex polygon with minimum area which contains all the
contacting points of legs on the ground. If the support
pattern includes the ZMP, the balance can be kept at
this instance. According to this discrimination, the
single support phase of biped locomotion is most diffi-
cult to maintain the balance, since the support pattern
is the smallest.
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In order to treat such
a difficult case as simply
as possible, we suppose
a model in the sagittal
plane on the level ground,
as shown in Fig. 1.
This model consists of two
links, the foot part and
the body part. These two
links are connected at the
ankle joint with an actu-
ator. The total weight
is supported at the two
point of the foot in both
ends, i.e., the toe and heel.
Two force sensors are at-
tached there, which detect
the vertical ground reac-
tion forces FT (at the toe)
and FH (at the heel).
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Figure 1: Link model.

The model tumbles, if either FT or FH becomes
zero. Therefore, the object of control is to keep both
FT and FH positive using ankle actuator. Assuming
that the friction on the ground is so large that the foot
does not slip on it, only the body part has dynamics:

Iθ̈ = MLg sin θ + τ, (1)

where M is a mass of the body part, I is an inertia
moment around the ankle joint, g is a gravitational
acceleration, θ is an angle from the vertical direction,
L is the length between ankle joint and the COG of the
body part and τ is an ankle joint torque. In addition,
the constraint force exerted at the ankle joint fx and
fy is described as

fx = MLθ̈ cos θ − MLθ̇2 sin θ (2)

fy = −MLθ̈ sin θ − MLθ̇2 cos θ +Mg (3)

On the other hand, the ground reaction forces FT and
FH become

FT = − 1

T + 
H

τ +mT g +

H


T + 
H
fy (4)

FH =
1


T + 
H
τ +mHg +


L


T + 
H
fy (5)

which are derived from static torqu balance around
heel and toe. Here, 
T , 
H and 
G represent the length
from the ankle joint to, respectively, toe, heel and
COG of foot part. mT and mH is a mass of foot part
weighted respectively to toe and heel, which is given
by

mT =

H + 
G


T + 
H
m, mH =


T − 
G


T + 
H
m (6)

where m is the total mass of the foot part.

2.2 Two control laws

Being about to tumble, human puts their weight
on the leaning side of the foot. As a result of this
action, the ground reaction force increase at this side.
Thus, we first examine how large they can be in order
to consider the control law based on ground reaction
forces. To begin with, let us study the case of FT .
Statically, if the total weight of the body part is put
to the toe, then FT takes the largest value:

Fmax
T = (M +mT )g (7)

Accordingly, if the body part is leaning to the toe side,
we control the ground reaction force FT to converge
to Fmax

T . Such a control input is given by

τ = −(
T + 
H)[Fmax
T +K

∫
(Fmax

T − FT )dt]

+(
T + 
H)mT g + fy
H , (8)

since the dynamics of FT is described as

FT = Fmax
T +K

∫
(Fmax

T − FT )dt. (9)

In (8) or (9, K > 0 is a force feedback gain.
Next, let us consider the system behavior when the

torque (8) is inputted. To simplify the calculation, we
assume that the FT have already controlled to Fmax

T .
Furthermore, we approximate fy by Mg, which means
that the effect of centrifugal and inertial force is small.
Then, τ becomes

τ = −(
T + 
H)Fmax
T + (
T + 
H)mT g + 
HMg

= −M
T g(= τT ) (10)

This torque input is advantageous since it is calculated
without feedback information. Substituting it into (1),
the dynamics of body part becomes

Iθ̈ = MLg sin θ − M
T g. (11)

The fixed point of this dynamics in the θ − θ̇ phase
plane is given as (θT , 0) in the range θ ∈ [−π/2, π/2],
where θT is a value in [−π/2, π/2] that satisfies

sin θT =

T

L
. (12)

We can show this fixed point is a saddle point from the
eigenvalues of linearized dynamics. The orbits of this
dynamics in the phase plane are shown in Fig. 2(a).
When θ = θT , the COG of the body part is located

just above the toe. This corresponds to the foremost
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Figure 2: Control by τT
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Figure 3: Control by τH

position at which the model can statically keep bal-
ance. Therefore, controlling FT to Fmax

T is equivalent
to making foremost position an unstable saddle point
and raising up the body part from the leaning posi-
tion, as shown in Fig. 2 (b).
In the case of FH , we can derive the same argument.

The desired force value is set to

Fmax
H = (M +mH)g (13)

and then the torque input is determined by

τ = (
T + 
H)[Fmax
H +K

∫
(Fmax

H − FH)dt]

−(
T + 
H)mHg − 
T fy. (14)

The simplified torque input, which corresponds to (10),
can be defined as

τ = (
T + 
H)Fmax
H − (
T + 
H)mHg − 
T Mg

= M
Hg(= τH) (15)

The obits in the θ − θ̇ phase plane is shown in Fig. 3
(a). This torque input makes θ = θH unstable fixed
point (saddle point) in the θ − θ̇ phase plane, where
θH is a value in [−π/2, π/2] which satisfies

sin θH = − 
H

L
. (16)
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Figure 4: Vector Field and switching condition.

The position at θ = θH corresponds to the rearmost
position at which the model can keep static balance,
as depicted in Fig. 3 (b).

2.3 Switching rules

In order to make the body part upright, we switch
the control laws alternatively between (10) and (15).
Here, we discuss the switching rules between them.
As mentioned in the previous section, τT acts so that
the body part goes back to the heel side. Thus, when
the body part is moving to the toe side, i.e., θ̇ > 0, we
adopt the control law (10) in order to stop it tumbling
to the toe side. However, if it starts moving to the
heel side, i.e., θ̇ < 0, then the control law should be
switched from τT to τH before long.
When it is switched is determined based on the

ground reaction force. As far as τT is inputted, FT

will be controlled to Fmax
T according to the derivation

process of it. Therefore, we pay attention only to the
positiveness of FH . If FT is controlled to Fmax

T by
(10), FH will be equal to mHg. So, we switch the con-
trol laws the instance that FH becomes smaller than
mHg. In other words, as long as the condition

FH > mHg (17)

is satisfied in the region θ̇ < 0, the control input is
τT . Using (1), (3), (5), (6) and (10), this condition
changes to

θ̇ > −
√
−MgL

I
(sin θ − 
T

L
) tan θ. (18)

In summary, the input (10) is valid in the shaded re-
gion in Fig. 4(a): when the system state transverses
the bold line, the control input is switched from (10)
to (15). It should be emphasized that this switching
condition is defined with the force information, i.e.,
(17), not (18).



Similarly, we define the switching rule from (15) to
(10). The equations corresponding to (17) and (18)
are respectively given as

FT > mT g (19)

and

θ̇ <

√
−MgL

I
(sin θ +


H

L
) tan θ. (20)

The shaded region in Fig. 4(b) is the one where τH

is used as the control input. When the system state
transverses the bold line, the control input is switched
from (15) to (10)
By switching two vector field, i.e., Fig. 4(a) and

4(b), an attractor, is formed at the neighborhood of
the origin. The convergence of this control law is dis-
cussed in Appendix.

3 Posture adjustment to external force

The control law proposed in previous section al-
ways makes the body part upright. However, human
changes its posture with the environmental conditions,
and so the body part is not always upright at the
steady state. For example, when the external force
is stationary added, e.g., by the strong wind, human
incline the body to the windward side.
Let us consider such a behavior. Putting an hor-

izontal external force to Fext, the motion equation
changes to

Iθ̈ = MgL sin θ + FextL cos θ + τ. (21)

Here, we focus on the integral of ground reaction forces
during a longer period Tc than the switching interval
of control laws. Denoting them by F̄H and F̄T , then

F̄T =
1
Tc

∫
Tc

FT dt = − τ̄


T + 
H
+mT g +


HMg


T + 
H
(22)

F̄H =
1
Tc

∫
Tc

FT dt =
τ̄


T + 
H
+mHg +


LMg


T + 
H
(23)

where τ̄ = 1
Tc

∫
Tc

τdt, and fy = Mg assuming that the
dynamics have already converged to the steady state.
To keep upright against the horizontal force from the
toe side (then Fext < 0), F̄H will be larger than F̄T .
This situation implies that the weight does not put
evenly to the foot, and so it is easy to tumble to the
heel side than to the toe side. Accordingly, we consider
the torque input τα to reduce the difference between
F̄H and F̄T ,

F̄H − F̄T =
2


T + 
H
(τ̄ + τα) + Fo (24)
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Figure 5: θ-θ̇ plane whose initial state is (0.05, 0).

where Fo is a constant difference resulting from the
leg structure,

Fo = (mH − mT )gTc +

T − 
H


T + 
H
MgTc. (25)

If τα is defined discreetly at every Tc as

τα(k) = τα(k − 1)
+Kα


T + 
L

2

(
Fo − Ēf (k) + Ēf (k − 1)

2

)
Tc (26)

then F̄H − F̄T converge to Fo. Here, Ēf (k) = F̄H(k)−
F̄T (k), k is the number of the steps of the period Tc,
and Kα is a feedback gain. We use bilinear approxi-
mation to calculate the integral.
Note that τα adjust the offset of the switching torque

τT and τH . That is, τT is replaces by τα−Mg
T , while
τH does by τα +Mg
H .

4 Simulations

4.1 Stability

In order to examine the stability of the control laws,
we set the initial state as a posture inclined to the
toe side (θ, θ̇) = (0.05, 0). The parameters are set as
M = 50, m = 1.0, L = 0.85, 
T = 
H = 0.13, 
G = 0.
We use (10) and (15) as the control inputs. The step
size of simulation is set to 0.001(s), and the simulating
time is 1.0(s). As shown in Fig. 5, the system state
converges to the attractor at the neighborhood of the
origin in θ-θ̇ plane, i.e., upright posture.

4.2 Posture changes

Next, we give a horizontal external force as follows:

fext =
{ −βMgt/30 (0 ≤ t < 30)

−βMg (t ≥ 30) (27)
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Figure 6: The effect of external force.

Here, β is set to 0.16 and t denotes the time. This
external force tumbles the model on the floor to the
heel side, if using a conventional position feedback law
which is designed to control the body’s angle θ to
vertical position 0 (rad). This is because the ZMP
calculated from the gravitational and external forces
goes out of foot, i.e., slightly backward to the heel.
Although it is not shown, the body actually tumbles
down to the heel side with the control laws used in the
simulation of section 4.1.
However, introducing an adaptive torque τα, the

body part is gradually inclined to the toe side, as a re-
sult of which the ZMP is kept under the foot. Fig. 6(a)
shows the time evolution of the angle θ, which changes
with the magnitude of the external force. In this sim-
ulation, the initial state is set to (θ, θ̇) = (0, 0), Kα =
0.01, Tc = 0.5 and the simulating time is 40.0(s). The
other parameters are the same as the simulation in the
previous section.
At the end, θ converges about to 0.16(∼ arctan 0.16).

Fig. 6(b) shows the posture in the stationary state,
where the gravitational force and the external force
are balanced and thus generate no torque around the
ankle. Therefore, it is a preferable posture from the
energetic point of view. The stability of this posture is
also maintained by switching two control laws, τT +τα

and τH + τα. Thus, the vibration is observed in Fig.
6(a). Fig. 6(c) shows the behavior in the θ-θ̇ phase
plane. Needless to say, the ground reaction forces, FT

and FH are kept positive during the simulation.

5 Conclusion

In this paper, we considered a balance control of
a simple legged system based on the ground reaction
force. First, we define two force control laws: one con-
trols the ground reaction force exerted at the heel, the
other does at the toe. Then, by alternatively switch-
ing them, an attractor is formed near the upright po-
sition. Furthermore, we introduced a control input
varying in a large time scale. This adaptive torque
input acts so that the difference of the time integral
in two ground reaction forces converges to the value
without any external forces. As a result, the stand-
ing posture is gradually inclined against the external
force.
In our control laws, the joint angle is not a con-

trolled variable. Thus, any desired postures are not
given in advance. Instead, the environmental condi-
tions, i.e., the external forces, determine the station-
ary standing posture such that the time average of the
ankle torque become smaller.
As a future works, we should show the convergence

of this postural adjustment. A part of this research
was financed by the Research Foundation for the Elec-
trotechnology of Chubu (R-11102).
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Appendix

We discuss the convergence of control laws defined
in section 2. Here, we treat the simple case 
H = 
T =

, which means that the ankle joint is located at the
center of the foot part. Then, the following two lemma
holds.

Lemma 1 For the dynamical system defined by (1)
and (10), the initial condition is set to (θ0, 0), where
(0 < θ0 < θT ). Then, the orbit of solution calculated
from Hamiltonian

MgL

I
(cos θ+




L
θ)+

1
2
θ̇2 =

MgL

I
(cos θ0+




L
θ0) (28)

intersects the curve specified by FH = mHg, i.e.,

θ̇ = −
√
−MgL

I
(sin θ − 


L
) tan θ. (29)

in the θ − θ̇ plane.

Lemma 2 Consider the dynamical systems defined by
(1) and (15). At all the points on (29), the vector field
points to the inwards (upper ward) direction of (29).

Now let us consider the system behavior. Assume
that the initial state is (θ0, 0) where 0 < θ0 < θT .
According to the lemma 1, the orbit of the solution
(28) intersects (29). Put this point to (θ̃0,

˙̃θ0). Here,
θ̃0 < θ0 holds due to the monotonousness of the orbit
(28). When the state reaches the point (θ̃0,

˙̃
θ0), the

control law (10) is immediately switched to (15). Ac-
cording to Lemma 2, the time evolution followed by

(15) is directed upward of (29). Thus, the orbit of the
solution obtained from Hamiltonian

MgL

I
(cos θ − 


L
) +

1
2
θ̇2 =

MgL

I
(cos θ̃0 − 


L
) +

1
2
˙̃
θ0

2

(30)
encounters the θ axis without intersecting (29) again.
Putting this cross point to (θ1, 0), θ1 < θ̃0 is satis-
fied from the monotonousness of the orbit given by
(30). At this point (θ1, 0), the control law (15) is
again switched back to (10). Here, regarding the above
process as the one cycle, construct the return map
whose transection is θ axis. From the above discus-
sion, 0 < θ1 < θ̃0 < θ0 is satisfied, and so θ1 = γ0θ0

(0 < γ0 < 1). Generally, the return map is described
as

θn+1 = γnθn(0 < γn < 1). (31)

Therefore, θn is represented by

θn = γn−1θn−1 = · · · =
n−1∏
i=0

γiθ0 < γnθ0 (32)

where γ = max γi, Now, we can easily show that θn

goes to 0 with n → ∞, since 0 < γ < 1. This means
that the body part converges to the upright position
by the control lows in section 2.
From the symmetry of the system, we can deduce

the same result for the initial state (θ0, 0)(θH < θ0 <
0). These results are summarized to the following the-
orem:

Theorem 1 For the dynamical system described as
(1), the control laws are defined as (10) and (15) whose
switching conditions are illustrated as a bold line on
the θ-θ̇ phase plane in Fig. 4. If 
T = 
H , the control
laws make the system state converge to (0, 0) from any
the initial state (θ0, 0) where θH < θ0 < θT .

Note 1 In the simulation, the control law does not
always switch just on the bold line in Fig. 4, such
as (29). Then, the vector field of the switching point
points to the outward direction of (29) at the neigh-
borhood of the origin. Therefore, the system does stay
around the origin, but not converge exactly to it.


