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1 Deceased.
a b s t r a c t

In this paper, distributed systems that consist of many locally connected subsystems, espe-
cially oscillators, and produce linear state relations, such as a state difference, are treated.
The relations are defined between two connected subsystems, where their references are
also assigned as a goal behavior simultaneously. The problem is: how subsystem dynamics
are constructed to converge the relations to their references by only use of local operations,
and how these references are adjusted if they are unachievable. To solve the above prob-
lems, a mathematical description of the subsystem interactions are clarified by extending
a method based on the gradient dynamics. Then, the reference adjustment is defined so
that the subsystem interactions decreases. As an example of this formulation, the relative
phase control of the circularly coupled oscillator system is considered, where the oscilla-
tion with the uniform phase lag should be achieved. This oscillator system is applied to
the timing controller for the multicylinder engine, and its effectiveness is discussed based
on the simulation results.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Spatiotemporal patterns are often observed in various fields [1]: convective rolls in a thermal liquid system [2], chemical
oscillation in the BZ reaction [3], or neural activations or motions in biological systems [4–6]. These patterns are constructed
from coordinated behavior of the many homogeneous components, such as molecules, neurons, or their ensembles.
Although the effect of independent actions of the distributed elements is limited only to their neighborhood, such micro-
scopic behavior produces a global pattern at the macroscopic level. This bottom–up approach allows the patterns to change
with the situation. In the above examples, striped and hexagonal patterns emerge in convective patterns [2], or chemically
impure substances determine whether a target or spiral pattern is produced [3]. The oscillatory behavior of a distributed sys-
tem is occasionally described using a coupled oscillator system, where the pattern is represented by relative phases in the
synchronization. Coupled oscillator systems are utilized to mathematically explain human motor behavior [7–9], quadruped
locomotion [10,11], insects [12,13], swimming patterns [14,15], and even the actions of single cell amoeba [16]. They are
effectively used in robots as a CPG (Central Pattern Generator) controller [17–19]. The mathematical analysis of coupled
oscillator systems has been thoroughly discussed with numerical simulations [20–25]. This paper differs from these
. All rights reserved.
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excellent studies in that the desired phase lags (i.e., reference relative phases) are initially explicitly assumed as the objective
of the control and then the design of the oscillator interaction is considered to achieve this objective. Next, adaptive behavior
is considered for adjusting the reference relative phases if they are inappropriate for the environment. This engineering
viewpoint is import for providing more insight into the system design. As for the former problem, a method based on the
gradient system was proposed [20]. In Section 2, this method is reviewed after formulating the problem with some assump-
tions, and then the mathematical formulation of the subsystem dynamics is discussed with focusing on the interactions. In
Section 3, how is the situation in which the reference relations are unachievable is explained at first, and then an adjustment
method of the unachievable reference is proposed based on the subsystem interactions. In Section 4, the relative phase reg-
ulation in coupled oscillator system is considered as an example, and is applied to the timing control of multicylinder engine.
Finally, this paper is concluded in the Section 5.

2. Control in the distributed system

2.1. Problem setting

Yuasa and Ito proposed a method for controlling relative phases in a coupled oscillator system [20]. Their framework is
based on parallel and distributed operations and is more general in the sense that linear relations between the one-dimen-
sional state variables of two coupled subsystems can be regulated to their references. Of course, the linear relations include a
difference in the state variables (the relative phase, in the case of a coupled oscillator system).

First, the following are assumed:

� The system under consideration consists of homogeneous subsystems.
� The state of the subsystem is represented by a scalar variable.
� The subsystems are connected locally, implying that there is no hub subsystem which all subsystems connect to.
� Two connected subsystems can exchange state variables, each affecting the state variable of the other. This is called

‘‘interaction”.
� A constraint (i.e., a variable calculated from the states of the two coupled subsystems) is defined for each connection. This

variable is called a ‘‘constraint variable”.
� Each constraint variable possesses a reference value that represents a purpose of the entire system.

Under these assumptions, the problem is described as follows:

� Define the dynamics of each subsystem with local interaction such that the constraint variables are regulated to their
references.

Here, dynamics with local interaction means, mathematically, that the system never contains any state variables other
than those of the connected subsystems.

2.2. A design method based on a gradient system

The state of each subsystem is denoted by qi 2 Rði ¼ 1; . . . ;MÞ, where M is the number of the subsystems. Yuasa and Ito
[20] formulate a case where the constraint variable pk is given by the linear relation:
pk ¼ Lkiqi � Lkjqj ð1Þ

This equation implies that the connection kðk ¼ 1; . . . ; KÞ connects subsystem i and subsystem j, as shown in Fig. 1. This
relation can be represented using the matrix form
P ¼ LQ ð2Þ
Fig. 1. System consisting of many homogeneous subsystem and constraint variable.
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where P ¼ ½p1; . . . ; pK �
T ;Q ¼ ½q1; . . . ; qM�

T ; L 2 RK�M is a matrix whose (i, j) element is given as Lij. Owing to (1), the number of
non-zero elements is two in each row of the matrix L. Then, the problem is how to design subsystem dynamics
_qi ¼ fiðQNðiÞÞ ð3Þ
for P to converge to its reference Pd ¼ ½pd
1; . . . ; pd

K �
T . Here, NðiÞ is a set of subsystems connected to subsystem i, Q NðiÞ is a vector

in RNi whose element belongs to NðiÞ and Ni is the number of the elements in NðiÞ.
A method using a gradient system has been proposed for this problem.

Theorem 1 [20]. Suppose that the dynamics of the distributed system is given as
_Q ¼ F þ eF ð4Þ
Here, F is a vector within the kernel of matrix L and eF ¼ ½~f 1; . . . ;~f M �T is described as a function of the variable xi:
~f i ¼ ~f iðxiÞ ð5Þ
where xi is the ith element of the vector X that is defined as
X ¼ �LT P ¼ �LT LQ ð6Þ
Then, the dynamics of P becomes a gradient system whose potential function VðPÞ ¼ VXðXÞ is given by
VXðXÞ ¼
XM

i¼1

Z
~f iðxiÞdxi ð7Þ
Because of the definition of L; xi contains no state variables other than those of subsystems connected to subsystem i,
implying that the conditions in (3) are satisfied. ~f iðxiÞ expresses the effect of interaction, because any other terms do not con-
tain the states of connected subsystems.
2.3. Description of the effect from the connected subsystems

The above theorem results in the following subsystem dynamics:
_qi ¼ �f i þ ~f ðxiÞ ð8Þ
Now, what type of functional systems should be used to design ~f ðxiÞ?
The dynamics of the linear constraint variable P become
_P ¼ LeF ð9Þ
If P is controlled to its reference Pd, the time evolution of P should stop, i.e., _P ¼ 0 should hold. One method is to define eF so
that eF ¼ 0 when P ¼ Pd. When P becomes Pd, X is
Xd ¼ �LT Pd ð10Þ
From the above equation, the next relation is obtained:
X � Xd ¼ �LTðP � PdÞ ð11Þ
Thus, it is sufficient to define ~f as
~f i ¼ gðxi � xd
i Þ ð12Þ
where the function g satisfies the following three conditions [26]:
gð0Þ ¼ 0 ð13Þ

dgðxÞ
dx

����
x¼0

> 0 ð14Þ

gðxÞ – 0ðx – 0Þ ð15Þ
The first condition (13) ensures ~f ¼ 0 at xi ¼ xd
i . The next condition (14) is needed to make xi ¼ xd

i the minimum point of the
potential function of (7). The last condition (15) is required for xi ¼ xd

i to be the sole minimum point of this potential func-
tion. The odd function should be selected if the effect of the connected subsystem is the same in the bilateral direction.
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3. Constraint adjustment

3.1. Expression of interaction

In Section 2.1, the interaction was defined as an effect on the state of the other subsystem. Here, the expression of this
interaction is discussed under the formulation in Section 2.3.

~f i in (8) is defined to achieve the reference Pd. Therefore, one reasonable idea is that the effect from the other subsystem is
driven by the error, i.e., the difference in the constraint variable pk from its reference pd

k . Among such expressions, the sim-
plest one is linearly represented as
Ik ¼ �Kkðpk � pd
kÞ ð16Þ
Thus, Ik is regarded as a mathematical expression of the interaction that works at connection k. Kk is a parameter that adjusts
the magnitude of the interaction. If an appropriate value is set to the parameter Kk based on the matrix L, (11) is rewritten as
xi � xdi ¼ �
XK

k¼1

ðLTÞikðpk � pd
kÞ ¼

X
k2CðiÞ

Ik ð17Þ
where CðiÞ is a set of connections that couple the subsystem i. The second equality holds because of the following reason: LT
ij

is not zero if there is a connection between subsystems i and j. In other words, it becomes zero only between unconnected
subsystems, implying that the summation in (17) actually sums the interaction only from subsystems connected to subsys-
tem i.

3.2. Unachievable reference

If the system contains a loop connection, such as in a circularly coupled system, the achievability of the reference is crit-
ical. For example, assume an oscillator system with n circularly coupled oscillators. A reference that causes each oscillator to
oscillate with a 1=n-period lag is certainly achievable, but a reference with 1=ðn� 1Þ-period lag is not.

What happens in the stationary state if unachievable reference is set? The dynamics of P are given by (9), thus, _P ¼ 0 gives
its stationary state. Then, if eF , the orthogonal component of the kernel space of L, is defined using an odd function, as dis-
cussed in Section 2.3, X � Xd ¼ 0 holds because eF ¼ 0. Ideally, X � Xd ¼ 0 should be equivalent to that P converges to Pd, i.e.,
P � Pd ¼ 0. According to (11), however, X � Xd ¼ 0 is not a sufficient but only a necessary condition for P � Pd ¼ 0. In other
words, if P � Pdð–0Þ stays at the kernel of LT ;X � Xd becomes zero.

When P � Pd – 0 at the stationary state, the interaction in (16) does not disappear – it takes non-zero value. This implies
that non-zero interactions work permanently. This situation is not desirable from two points of view. Interactions are sup-
posed to work to achieve the references. However, in this situation, the references are never achieved, even if the interactions
are always working. This is inconsistent from a viewpoint of system control. Secondarily, the stationary state is maintained
by the mutual cancellation of non-zero interactions. Such non-zero interactions are disadvantageous from a cost viewpoint
and occur when unachievable references are set. Thus, modification of the unachievable reference must be introduced.

3.3. Adjustment of unachievable reference

In this section, the adjustment of the unachievable reference is discussed. Taking the above disadvantages into consider-
ation, reducing non-zero interactions is a natural criterion of the modification. Accordingly, using a cost function given as the
squared sum of the interactions,
VI ¼
1
2

XK

k¼1

I2
k ð18Þ
the adjustment rule is defined to decrease it as
dpd
i

dt
¼ �sp

@VI

@pd
i

ð19Þ
Here, sp is a parameter that regulates the adjustment speed of Pd. This is equivalent to memorizing a currently emerging P as
Pd. Here, Pd obtained from the above rule is a reference appropriate to the current environmental conditions in the sense that
it can be maintained with zero interactions. Note that this adjustment must be sufficiently slower than the dynamics (9) in
order to produce an appropriate constraint variable P, because the adjustment should start after the dynamics of the con-
straint variable converges.
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4. Application to timing control of multicylinder engine

4.1. Circularly coupled oscillator system

4.1.1. Formulation
The previous section proposed a distributed control method for controlling constraint variables between subsystems.

Here, it is applied to the relative phase regulation of a circularly coupled oscillator system. In this system, N oscillators
are connected in a circle, where each oscillator is numbered, in order from 1 to N, as shown in Fig. 2. The connections in this
coupled oscillator system are local – oscillator i is connected only to neighboring oscillators, oscillators i� 1 and iþ 1. The
phase of each oscillator is qiði ¼ 1; . . . ;NÞ.

The connection k represents a connection that connects oscillator k to oscillator kþ 1. To this connection k, a constraint
variable pk is defined. In this problem, the constraint variable is the difference of the states of the two connected oscillators,
i.e., the relative phase. This is obviously a linear relation, given as
pi ¼ qiþ1 � qi ð20Þ
This matrix expression corresponding to (2) is given using the matrix L
L ¼

�1 1 0 � � � 0

0 �1 1 . .
. ..

.

..

.
0 �1 . .

.
0

0 ..
. . .

. . .
.

1
1 0 � � � 0 �1

2666666664

3777777775
ð21Þ
The kernel of L, i.e., �f becomes
�f ¼ ½1; . . . ;1�T ð22Þ
Regarding the orthogonal complementary space of this kernel, a sine function is selected as gðxÞ in (12), taking the period-
icity of the oscillator phase into account:
gðxÞ ¼ s sinðxÞ ð23Þ
Then, the oscillator dynamics are defined as follows:
_qi ¼ xþ s sinðqi�1 � 2qi þ qiþ1 � pd
i�1 þ pd

i Þ ð24Þ
Here, x is a constant corresponding to the natural angular frequency, s > 0 is a parameter adjusting the magnitude of the
interactions, and qNþ1 ¼ q1; q0 ¼ qN; pNþ1 ¼ p1; p0 ¼ pN; p

d
Nþ1 ¼ pd

1; p
d
0 ¼ pd

N .
If the potential function is defined using (7) as
V ¼
XN

i¼1

s cosððpi�1 � pd
i�1Þ � ðpi � pd

i ÞÞ ð25Þ
Fig. 2. A circularly coupled oscillator system.



S. Ito et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3100–3112 3105
The dynamics of pi are certainly described as the gradient system of this potential function:
� @V
@pi
¼ s sinððpi � pd

i Þ � ðpiþ1 � pd
iþ1ÞÞ � s sinððpi�1 � pd

i�1Þ � ðpi � pd
i ÞÞ ¼ _qiþ1 � _qi ¼ _pi ð26Þ
4.1.2. Stationary state
At the stationary state, X � Xd ¼ 0 is satisfied. Using (11) and (21), the solutions of X � Xd ¼ 0 are given as
p1 ¼ � � � ¼ pK ¼ const: ð27Þ

This means that an oscillation pattern finally emerges in which all oscillators oscillate with a constant relative phase to the
connected one. Of course, this oscillation pattern includes a completely phase-coherent oscillation, where all the oscillators
have the same phase, i.e., the zero relative phase.

4.1.3. Adjustment of the reference relative phase
In the previous section, an oscillation pattern with the same relative phases was achieved regardless of the reference Pd.

Based on the analysis in Section 3, if the constraint variable pk is not equal to the reference pd
k in the stationary state, this

reference is unachievable and inappropriate under the current conditions. In such a case, the reference is adjusted according
to (19) to be appropriate and consistent with current conditions.

4.2. Application to the timing controller of a multicylinder engine

4.2.1. Concept
Timing control of a multicylinder engine is one possible example of the application of the circularly coupled oscillator

system formulated in this section [27,28]. In a four-stroke cycle engine, four strokes are repeated: induction, compression,
explosion, and exhaust. Because of its periodicity, this engine stroke is characterized by the phase of the engine cycle. Appro-
priate phase shifts among the cylinders provide stable output with minimal fluctuation. Inappropriate phase timings, how-
ever, causes vibration or degradations of engine efficiency. In short, ‘homogeneous phase shifts’ among the cylinders are
important for a multicylinder engine. This requirement well matches the behavior of the circularly coupled oscillator system
considered in Section 4.1.1.

The production of homogeneous phase shifts has no relationship with the reference of the constraint variable in the cir-
cularly coupled oscillator system. This may enhance the fault tolerance of this engine. For example, assume that one of the
cylinders fails. In this situation, the relative phases of the engine cycle are not equal among the remaining cylinders. How-
ever, drive with the same interval is feasible with the remaining cylinders if the cylinder movement phase is adjusted prop-
erly. To this adjustment the above property must be applied. If possible, the relative oscillator phases should automatically
change when the number of oscillators increases or decreases because of troubles or system modification.

In addition, if the reference is also adjusted based on the current oscillation, the coupled oscillator system can always
memorize the appropriate oscillation pattern for the current condition.

4.2.2. Controller specifications
A four-stroke cycle engine is considered. The number of cylinders is set to N. The dynamics of this engine are described by

the motion equation and the state equation for an ideal gas [29].
The specifications of the controller that regulates the timing of the engine cycle among the cylinders are set as follows:

� It produces an oscillation pattern with a 1=n-period phase lag, if the number of cylinders in operation is n.
� It adjusts the relative phase automatically when the number of cylinders increases or decreases.
� It learns or memorizes the appropriate references for the current conditions.

Here, the controller is assumed to detect the rotational velocity of the engine shaft X.

4.2.3. Design and assumption
The circularly coupled oscillator system in Section 4.1 is used. N oscillators are prepared for the controller. This number is

the same as that of the engine cylinder. An oscillator is assigned to each cylinder, and the phase of the engine cycle is as-
sumed to be controlled by the phase of the corresponding oscillator.

The rotational velocity of the engine shaft X is sent from the engine to the controller as a feedback signal. Each oscillator
in the controller is driven based on this signal, i.e., using the parameter x in (24). This x is determined from the rotational
velocity of the shaft x ¼ xðXÞ to synchronize the shaft and stroke cycles.

4.3. Simulations

4.3.1. Conditions
To examine the effect of homogeneous phase shifts, consider the case where the number of cylinders decreases/increases

from initial four cylinders ðN ¼ 4Þ as follows:
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Fig. 3. Simulation results when the number of the operating cylinders decreases.
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� The number of operating cylinder changes at 1.0 [s].
� For a while, the engine works without any phase shift.
� Oscillator control for relative phase regulation starts to operate at 3.0 [s].

Here, it is assumed that the oscillator connection is kept in the circular form, regardless of the increment/decrement of
the cylinders. Simulations are based on the following equations; (24) for oscillator dynamics, (19) for the adjustment of
unachievable relative phase references, (31) for motion equations of engine with constraints (40) in appendix A, and gas
dynamics defined separately in five phases in appendix B. The parameters are set as follows: s ¼ 10:0 and sp ¼ 0:5. Because
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Fig. 4. Simulation results when the number of the operating cylinders increases.
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the number of cylinders is known at the initial state (N = 4), each oscillator phase is set such that they are shifted p=2 from
each other and the references of the relative phases satisfy this condition, i.e., pd

k ¼ p=2ðk ¼ 1; . . . ;4Þ. The oscillator is driven
according to the feedback of the shaft speed followed by



Table 1
Numerical analysis of the shaft rotation velocity (rpm).

Condition Average S.D. Maximum Minimum Fluctuation

4-Cylinders 2434.5 82.9 2601.3 2324.7 276.6
3-Cylinders (before control) 2404.9 168.4 2806.1 2143.6 662.5
3-Cylinders (under control) 2278.0 131.8 2278.0 2087.4 190.6
5-Cylinders (before control) 2431.5 147.6 2679.2 2146.4 532.8
5-Cylinders (under control) 2390.1 88.9 2501.6 2246.8 254.9
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x ¼ X=2ð¼ _h=2Þ ð28Þ
because the piston moves up and down twice in the one engine cycle. The fourth order Runge–Kutta method are used for
simulations with a step size of 0.1 [ms].
4.3.2. Results
Two cases are examined by the computer simulations. In the fist case, the number of cylinders decreases, i.e., cylinder four

breaks down. The results are shown in Fig. 3. In the second case, the cylinder 5 is inserted between cylinder 4 and cylinder 1,
resulting that the number of cylinders increases. The results are shown in Fig. 4. The graphs in (a)–(c) are time-based plots of
the rotational velocity of the engine shaft X, the phase of each oscillator, and the relative phases with their references,
respectively. The shaft rotational velocity at each condition is summarized in Table 1. In both cases, the notation ‘‘4 cylin-
ders” denotes the results during the period from 0.9 s to 1.0 s. And, the notation ‘‘before control” means the results during
the period from 2.9 s to 3.0 s, while ‘‘under control”, from 4.9 s to 5.0 s.
4.3.3. Discussions
The shaft rotational velocity settled into the stationary state after a transient period of about 0.5 s, as shown in the graph

(a) of both Figs. 3 and 4. The variation of the number of operating cylinders noticeably enlarges the fluctuation of the shaft
rotation velocity, which is observed as a phase transition at 1.0 s. However, this fluctuation is somewhat suppressed thanks
to the relative phase regulation of the oscillator control. Numerical results are summarized in Table 1.

Initially, each oscillator oscillates with the same phase lags, i.e., p=2, as depicted in the top graph of Fig. 3(b) and Fig. 4(b).
This balanced oscillation pattern is disturbed as shown in the middle graph. The relative phase control, however, recovers the
homogeneous phase shift as shown in the bottom graph: the relative phase and its desired values converge to 2p=3 (1/3-
period) in Fig. 3(c) while to 2p=5 (1/5-period) in Fig. 4(c), which is an appropriate and achievable relative phase in both cases.

Regarding to the convergence of the relative phase control, the ideal object X � Xd ¼ 0 is difficult to achieve due to the
parameter variations among cylinders, or the distortion of the sinusoidal oscillation caused by the intermittent driving force
from each cylinder. Therefore, taking the periodicity of the oscillator dynamics into account, a criterion

R
TðX � XdÞdt < e

(here T is a period of the oscillation, and e is a threshold that determines a convergence) is more appropriate, although
the convergence was not mainly considered in the simulations. This criterion will somewhat loosen the homogeneous
assumption of subsystems in Section 2.1.

In order to realize this system as the actual mechanical engine, we have to make an effort to remove two assumptions:
one assumption is that the phase of cylinder movement can be adjusted according to the oscillator signal, which is normally
determined mechanically as a relative angle of the clank shaft. The other is how to keep the oscillator connection as a circular
form.
5. Concluding remarks

This paper addressed a problem in a distributed system that the linear state relations between subsystems are regulated
to its reference by means of a local parallel control. Here, the local means that the controller utilizes restricted information
given only from the connected subsystems. Based a method using a gradient system, it was clarified that monotonically
increasing odd functions are available to describe the effect from the connected subsystems. Next, the adjustment of the ref-
erences was discussed when the references were unachievable. Making the definition of the subsystem interactions clear, an
rule of references adjustment was proposed so as to reduce these interactions. As an example of the distributed system, a
relative phase regulation of the circularly coupled oscillator system was considered. Then, it was applied to the timing con-
trol of the multicylinder engine. Computer simulations demonstrated the effective change of the linear state relations, i.e.,
the relative phase, to decrease the fluctuation of the rotation velocity of the engine shaft even if the number of operating
cylinder varied. In addition, the reference of the relative phase was adjusted to an appropriate and achievable one in the cur-
rent conditions. As a future works, we try to extend this control and adjustment method so that it can treat non-linear state
relations and consider several practical applications of this method.
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Appendix A. Motion equation of the single cylinder with constraints

The motion is described within the two-dimensional plane. At first, we describe the mechanical constraints. Notations are
shown in Fig. 5. From the positional relation, the following equations are satisfied:
CðXÞ ¼

Xp � X � ‘ cos /

�Y þ ‘ sin /

X � ‘ cos /� r cos h

Y þ ‘ sin /� r sin h

26664
37775 ¼ 0 ð29Þ
where
X ¼ Xp X Y / h½ �T ð30Þ
is a position vector of the motion equation. Then, the motion equation under these constraints are given as follows:
M €X ¼ JT F þ Fe ð31Þ
Here
M ¼ diag½Mp;M;M; I; Is� ð32Þ
M;Mp are mass of the con rod and piston and I; Ic are the inertial moment of the con rod and shaft, respectively.
J ¼ @C
@X
¼

1 �1 0 ‘s/ 0
0 0 �1 ‘c/ 0
0 1 0 ‘s/ rs

0 0 1 ‘c/ �rc

26664
37775 ð33Þ
where s/ ¼ sin /; c/ ¼ cos /; s ¼ sin h and c ¼ cos h
F ¼ Fpx Fpy Fcx Fcy½ �T ð34Þ
is constraint force exerted between links.
Fe ¼ �FA þ Ff �Mpg �Mg 0 sp � sc sc½ �T ð35Þ
FA is force generated by the pressure difference:
FA ¼ ðP � P0ÞS ð36Þ
S is the area of the cylinder. Ff ; sp and sc are the friction torque/force given as
sc ¼ �Bcð _/þ _hÞ ð37Þ

sp ¼ �Bp
_/ ð38Þ

Ff ¼ �Bf
_Xp � lf Fpysgnð _XpÞ ð39Þ
Bc;Bp and Bf denotes the viscosity and lf is the kinetic friction coefficient of the cylinder.
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Fig. 5. Mechanical model of engine.
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Differentiating the constraints (29) two times, we obtain
J €X ¼ _J _X ð40Þ
The simultaneous Eqs. (31) and (40) have the unique solution €X and F since matrix M is non-singular. This numerical solution
is utilized in the computer simulations.

Of course, in the case of the multicylinder system, the motion equations of each piston and con rod should be added. In
addition, that of the shaft must be modified so that the driving moment is applied from the all the cylinder.

Appendix B. Gas dynamics

The gas dynamics are expressed in each stroke. The stroke is assumed to be switched based on the crank shaft angle. How-
ever, the volume is uniquely demerited from the position of the piston Xp at all the strokes.
V ¼ SðXM � XpÞ þ V0 ð41Þ
where XM is the position of the piston at the top dead center, V0 is the volume of the initial state. From this equation, the
dynamics of the volume is defined as
_V ¼ �S _Xp ð42Þ
B.1. Induction stroke (0 6 h 6 p=2)

This is a stroke from top dead center ðh ¼ 0Þ to the bottom dead center ðh ¼ p=2Þ. The temperature T1 as well as the pres-
sure P1 is kept at the initial value, i.e., P1 ¼ P0 and T1 ¼ T0, where P0 and T0 are constants denoting pressure and temperature
of the outside air, respectively. Thus, the dynamics of T1 and P1 is given as
_P1 ¼ 0 ð43Þ

_T1 ¼ 0 ð44Þ
B.2. Compression stroke (p=2 6 h 6 p)

This stroke is assumed to end when the piston reaches the top dead center again, i.e., h ¼ p. In this stroke, the pressure
and temperature is denoted by P2 and P2. If the adiabatic assumption is applied, we obtain
P2Vj
2 ¼ Pe

1ðV
e
1Þ

j ð45Þ
Here, Pe
1 and Ve

1 are a pressure and temperature at the end of the induction stroke, and j is the ratio of specific heat. In addi-
tion, from the state equation of the gas, we get
P2V2

T2
¼ Pe

1Ve
1

Te
1

ð46Þ
Using above two equations, the following equations hold:
P2 ¼ Pe
1 � �j2 ð47Þ

T2 ¼ Te
1 � �j�1

2 ð48Þ

where
�2 ¼
Ve

1

V2
ð49Þ
Then, the dynamics of P2 and P3 are given as

_P2 ¼ Pe

1 � j�j�1
2 � _�2 ð50Þ

_T2 ¼ Te
1 � ðj� 1Þ�j�2

2 � _�2 ð51Þ

_�2 ¼ �Ve
1

_V2

V2
2

ð52Þ
B.3. Explosion stroke (p 6 h 6 3p=2)

The explosion stroke is considered by dividing it into two strokes: combustion stroke and expansion stroke.
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B.3.1. Combustion process (p 6 h 6 pþ hC)
The combustion process starts exactly at the phase h ¼ p and ends at h ¼ pþ hC . There, the heat is assumed to be pro-

vided in proportion to the deviation of the phase
DT3 ¼ Q � Dh ð53Þ
which allows the total amount of the heat to be kept regardless of the rotation speed. Here, T3 is the temperature in the com-
bustion process. Furthermore, the Boyle-Charle’s law holds in this process
P3V3

T3
¼ Pe

2Ve
2

Te
2

ð54Þ
where P3 and V3 are the pressure and volume in this process, and Pe
2;V

e
2 and Te

2 are the pressure, volume and temperature at
the end of the compression stroke. From them, the following evolution equations are obtained.
_T3 ¼ Q � _h ð55Þ

_P3 ¼ Pe
2

_T3

Te
2
�

_V3

Ve
2

" #
ð56Þ
B.3.2. Expansion process (hc 6 h 6 3p=2)
As is the same as the compression stroke, the adiabatic assumption is imposed. The next equations are obtained in the

similar way.
_P4 ¼ Pe
3 � j�j�1

4 � _�4 ð57Þ

_T4 ¼ Te
3 � ðj� 1Þ�j�2

4 � _�4 ð58Þ

_�4 ¼ �Ve
3

_V4

V2
4

ð59Þ
where P4;V4 and T4 are the pressure, volume and temperature in this process, and Pe
3;V

e
3 and Te

3 are the pressure, volume and
temperature at the end of the combustion process.

B.4. Exhaust stroke (3p=2 6 h 6 2p)

The piston moves from the bottom (h ¼ 3p=2) to top dead center (h ¼ 2p). The pressure and temperature is assumed to be
kept constant
P5 ¼ P0 ð60Þ

T5 ¼ Te
4 ð61Þ
where P5 and T5 are the pressure and temperature in this stroke, and Te
4 is the temperature at the end of the explosion stroke.

Thus, we get
_P5 ¼ 0 ð62Þ

_T5 ¼ 0 ð63Þ
Appendix C. Parameters in simulation

The following values were used in computer simulations. Mp ¼ 3:5 kg;M ¼ 0:6767 kg;I ¼ 0:005 kgm;Ic ¼ 0:1 kgm;S ¼
0:007854 m2; ‘ ¼ 0:075 m;r ¼ 0:06 m;Bp ¼ 5:0 Ns=m;Bc ¼ 0 Ns=m;Bf ¼ 0 Ns=m;lf ¼ 0:3; P0 ¼ 103334 Pa;T0 ¼ 298 K;V0 ¼
0:000058905 m3; hC ¼ 0:3 rad;j ¼ 1:4. Not that it was assumed that all cylinders are completely same. The Q is determined
based on the shaft rotation velocity so that it goes to 2500 rpm.
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