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Abstract This article reports an analysis of two dimen-
sional grasp where a convex rigid object is grasped by two
contact points with friction. The purpose is to find the object
orientation that minimizes the norm of the contact force vec-
tor, each element of which is composed from the normal
force and friction force at each contact point. The formu-
lation of this problem requires some equality or inequality
conditions. In the analysis, the solution of the equality con-
ditions is parameterized at first. Based on the fact that the
norm of the contact force vector becomes monotonic increas-
ing function of this parameter, the minimal parameter values
are calculated by means of the piecewise analysis. Using the
relation between the friction coefficient and the apex angle of
the friction cone effectively, the following result is obtained:
the norm of the contact force, i.e, gripping power becomes
locally minimal at the object orientation where the intersec-
tion point of the upper sides of two friction cones is located
in opposite direction of the gravity from the center of mass
of the grasped object.

Keywords Grasping · Minimization · Gripping power ·
Friction · Object orientation

1 Introduction

Grasping an object is an essential function for humans.
Because the grasp is a task with redundancy, there are many
possibilities for performing it. For example, there are many
combinations of the contact points, i.e., places that the fin-
gers touch to grasp the object. When these contact points are
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assigned, the amount or direction of the contact forces is not
determined uniquely. The direction of the grasped object is
sometimes selected arbitrarily.

Such many possibilities originate from the ill-posedness
of the grasping problem. To grasp an object firmly, some
conditions or constraints are required (Nguyen 1988; Bicchi
1995). However, many degrees of freedom of the grasping
mechanisms like fingers allow multiple solutions even under
these constraints.

Methods for tackling to the grasping problem includ-
ing the ill-posedness are widely ranging, by use of neuro-
nal (Oztop and Arbib 2002; Shim et al. 2003; Frey et al.
2005), behavioral (Zatsiorsky and Latash 2008), computa-
tional (including analytical) (Shimoga 1996; Borst et al.
1999; Miller and Allen 2000; Miller et al. 2003; Lopez-
Damian et al. 2005; Ciocarlie et al. 2007; Huebner et al.
2008; Roa and Suárez 2009), or constructive (robotic)
(Arimoto et al. 2001; Dollar and Howe 2005; Berenson and
Srinivasa 2008) approaches. Among them, this article adopts
an analytical method: to elucidate the physical meaning of
the grasping task theoretically not only provides reasonable
evidences for understanding human strategies in the grasp
but also deduces beneficial knowledge on medical therapy for
hand motions, prosthetic hand control or robotic hand manip-
ulations in the factories. The framework of optimization is
a standard analytical method for ill-posed problems. Many
studies on grasp have been reported as an optimization prob-
lem with various kinds of an evaluation function or an opti-
mizing factor. Regarding the evaluation function, the norm of
the contact force vector is often selected. Some studies min-
imize the component that compensates for the gravitational
force of the object (Markenscoff and Papadimitriou 1989) or
the component required to balance the normalized external
force (Mirtich and Canny 1994; Mangialardi et al. 1996).
Regarding to an evaluation of the power grasp, Nakamura
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et al. focused on the external force just before the object
starts moving (Zhang et al. 1994) and created an algorithm
for calculating this force (Nakamura and Kurushima 1997).
A power output of the grasping mechanisms was proposed as
another evaluation function (Yong et al. 1998; Watanabe and
Yoshikawa 2003). Regarding the optimizing factors, on the
other hand, the placement of the contact points has been gen-
erally treated (Markenscoff and Papadimitriou 1989; Mirtich
and Canny 1994; Mangialardi et al. 1996), though some arti-
cles have considered the posture of the grasping mechanisms
(Yong et al. 1998; Watanabe and Yoshikawa 2003) or the
range of the contact point placement while keeping the force
balance in three dimensional space (Omata 1993). A method
for solving the optimization problems were another issue in
grasping. They were sometimes translated to linear (Cheng
and Orin 1990; Liu 1999) or quadratic programming (Ding
et al. 2001) by approximating friction cones using polyhe-
dral cones. An artificial neural network (Xia et al. 2004;
Al-Gallaf 2006) is another powerful method, and fuzzy logic
was utilized for aiming at real-time applications (Dubey et al.
1999).

Among some optimizing factors such as the placement of
the contact points and the magnitude of the internal forces or
joint torques of the grasping mechanisms, the posture of the
grasped object is considered in this article. The posture here
means the spacial relation to the world coordinate frame—in
other words, to the direction of gravity. This problem orig-
inates from our following observation: although some per-
sons can grasp a large ball only with one hand, as shown
in Fig. 1, one of authors cannot do. Of course, the small-
ness of his hand is a fatal reason: when a hand is large, the
contact points on the ball surface can be selected so that
the distance between them become large, which easily sat-
isfies contact point conditions: friction cones at the contact
points on the ball include the other contact points (see Sect.
2.3.1). Then, large internal forces can be applied without
the contact points slipping, resulting in that the forces com-

Fig. 1 One hand grasp of a large ball

pensating the gravity can be generated using the frictions.
However, there is a case where a person cannot grasp the
ball because he/she cannot generate enough large internal
forces. So, the following questions naturally arise: which
posture is the most possible to achieve with a less gripping
power?—if he/she cannot grasp an object at this posture,
he/she cannot grasp it at any other postures. Thus, the aim of
this article is to elucidate the posture that requires the least
forces for grasping an object. The grasp with the less grip-
ping power is preferable from the energetic point of view, as
well as because it has less possibility of breaking a grasped
object. However, such an issue was not sufficiently discussed
in the previous studies mentioned above. In our previous
studies (Ito et al. 2006), the friction was not considered. In
this study, it is extended to the grasp with frictions, and the
relation between an object orientation and the contact forces
are discussed to grasp it by the least contact force. This issue
is specific to the grasped object, in other words, indepen-
dent of the grasping mechanisms such as fingers or grippers,
although many studies treated the grasp including grasping
mechanisms (Cole and Abbs 1987; Iberall and MacKenzie
1990; Yong et al. 1998; Watanabe and Yoshikawa 2003).
Such object-specific matters probably include a universal fact
commonly found in various kinds of the grasping mecha-
nisms. In the next section, this topic is formulated as a min-
imization problem of the norm of the contact force vector.
In Sect. 3, a method for solving this problem as well as the
results are described, while their calculation processes are
shown after in the appendices. These results are examined
using some case studies in Sect. 4, and the article is con-
cluded in Sect. 5.

2 Grasp with frictions

2.1 Assumptions

The following assumptions allow us to solve the problem
here in an analytical, not numerical, manner.

– An object is grasped by the two contact points within the
two dimensional (2D) space.

– The object is convex and rigid.
– The shape of the object is smooth at the contact points.
– The contacts on the object are the point contacts with the

friction.

As an evaluation of the object orientation, the magnitude of
the contact forces is selected: larger contact forces than nec-
essary might damage the object. Above all, grasping with less
contact forces allowed us to efficiently maintain the grasped
posture with small gripping power.
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Fig. 2 Coordinate frames
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Fig. 3 Cases where the object can be grasped or not be grasped

2.2 Coordinate frame for analysis

The object grasped by two contact points in the 2D space
is illustrated in Fig. 2a. The object posture with respect to
the gravitational direction is represented by the angle θ .
The problem is formulated in the following way: what value
should be chosen for θ in order to grasp this object with less
contact forces.

This problem is easily described in the object coordinate
frame in which the origin is set to the center of mass (CoM)
of the object and the y axis is defined to be orthogonal to the
line connecting two contact points as shown in Fig. 2b. In this
object coordinate frame, the object orientation is represented
as the relative angle of the gravity vector from the negative
direction of the y axis.

In the object coordinate frame, the coordinate of the
two contact points are denoted by p1 = (x1, y)T and
p2 = (−x2, y)T ( �= p1), and the normal direction at these
contact points are, φ1 (CW) and φ2 (CCW), from the
negative direction of the y axis. Here, x1 > 0, x2 > 0,
y > 0, and 0 < φ1 ≤ π/2, 0 < φ2 ≤ π/2. The
contact forces are orthogonally decomposed to the normal
force Ni and the friction Fi (i = 1, 2) at each contact
point.

2.3 Formulation

2.3.1 Contact point conditions

If both friction cones contain the other contact point, then the
object can be grasped by these two contact points (Nguyen
1988). This condition can be described with inequalities. As
shown in Fig. 3, the apex angle of the friction cone is set to
2ξ . The upper and lower side of the friction cone is denoted
by �u and ��, respectively. The object is graspable if and only
if the relative angle of �u is greater than π/2 as well as the
relative angle of �� is less than π/2, where the relative angle
is measured from the negative direction of the y axis in the
object coordinate frame. These conditions become

φi − ξi <
π

2
< φi + ξi (1)

The above conditions can be rewritten with the friction coef-
ficient µi at each contact point. The following relation holds
between the apex angle and the friction coefficient.

tan ξi = µi (2)

Thus, subtract φi from (1), apply tangent operation for this
result, and use the relation (2). Then, the following inequality
is obtained:
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siµi + ci > 0, siµi − ci > 0 (3)

Here, si = sin φi , ci = cos φi .

2.3.2 Force balance conditions

In the 2D grasp, not only the force in the x and y direction but
also the moment within the plane including both coordinate
axes must be balanced. This balancing condition is described
using matrix as

L F = M (4)

where the contact force vector F and the gravity vector M
is defined as follows:

F = [ N1 F1 N2 F2 ]T (5)

M = [−Mgs Mgc 0 ]T (6)

Here, M is mass of the object, g is the gravitational acceler-
ation, s = sin θ and c = cos θ . The matrix, L , is called grasp
matrix, and described as

L =

⎡
⎢⎢⎢⎢⎣

−s1 −c1 s2 c2

−c1 s1 −c2 s2

L31 L32 L33 L34

⎤
⎥⎥⎥⎥⎦

(7)

L31 = −c1x1 + s1 y, L32 = +s1x1 + c1 y

L33 = +c2x2 − s2 y, L34 = −s2x2 − c2 y

2.3.3 Grasping conditions

Grasping the object from the above with frictions is the focus
of this study. Other cases, as illustrated with a shaded range in
Fig. 4, should be excluded, because the object can be kept on
the grasping mechanism just by being overridden on it, i.e.,
without actively grasping the object. This is why the range
of the gravitational direction θ is restricted as

θmin < θ < θmax (8)

where

θmin = −π + arctan2(x2, y) (9)

θmax = π − arctan2(x1, y) (10)

This range is illustrated by the arrowed line in Fig. 4. Here,
arctan2(Y, X) returns tan−1(Y/X) in the range [−π, π ].

2.3.4 Contact force conditions

The normal force is repulsive, i.e., works so as to push the
object. Thus,

(i) N1 > 0 (11)

(ii) N2 > 0 (12)

Fig. 4 Range of analysis

must hold. In addition, the vector of the contact force must be
included within the friction cone. In other words, to keep the
contact without slipping, the tangential force never exceeds
the maximal static friction force. It holds if |Fi | < µi Ni . This
condition can be decomposed to the following four inequal-
ities.

(iii) µ1 N1 − F1 > 0 (13)

(iv) µ2 N2 − F2 > 0 (14)

(v) µ1 N1 + F1 > 0 (15)

(vi) µ2 N2 + F2 > 0 (16)

2.3.5 Problem description

Now, the problem can be mathematically described as fol-
lows:

Definition 1 Under the contact point condition (3), find θ ,
within the range (8), that minimizes the norm of the contact
force vector F satisfying the force balance condition (4) as
well as the contact force conditions (11)–(16).

3 Analysis

3.1 Methods

The problem defined in the above section is one class of the
nonlinear optimization problems. Here, the following proce-
dure is taken to analytically solve it.
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Fig. 5 Relative direction of friction–cones’ intersection point

Step 1 Describe the solution of the force balance condition
given by equality (4) as a family of one parameter α.

From the physical point of view, α denotes an amount pro-
portional to the magnitude of the internal force. As we can
imagine, the norm of contact force vector F becomes a mono-
tonic increasing function of the parameter α, regardless of
the norm selection such as 1- or 2-norm. It indicates that a
smaller α gives a better solution. Therefore, the minimiza-
tion of the norm of F is replaced by that of the parameter
α. However, the parameter α must be selected so that all the
inequality conditions should hold. Thus, α is minimized by
the following steps:

Step 2 Calculate the lower limit of the parameter α for
respective inequality (11)–(16).

Here, let αk(θ) (k = 1, . . . , 6) to be the minimal α that sat-
isfies only one of the inequalities (i)–(vi).

Step 3 Construct the lower limit of the feasible solution
based on the result of the Step 2, and denote it to αmin(θ).

Any α greater than or equal to αmin in each θ satisfy all
the inequality conditions (i)–(vi). Therefore, αmin(θ) is con-
structed by selecting the maximal αk(θ) in each θ . This
process is equivalent to the comparison of the αk(θ) in the
piecewise range of θ .

Step 4 Analyze the minimal point of αmin(θ) and its physi-
cal interpretation.

The minimal solution of this problem is given as the mini-
mum point of αmin(θ). The physical meanings of the minimal
solution is analyzed to clarify the orientation of the grasped
object in the task coordinate frame.

3.2 Results

Details of calculations are described in the appendices. Only
the results are shown here. The results depend on the inter-
section point of the friction cones. Thus, following nota-
tion is defined here as shown in Fig. 5: Let �u
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1 to
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Fig. 6 Object orientations that gives a local minimal point

be the upper and lower side of the friction cone at the
contact point p1, respectively. So do �u

2 and �l
2 for p2.

Then define puu(Xuu, Yuu), pul(Xul , Yul), plu(Xlu, Ylu) as
an intersection point of �u

1 and �u
2, �u

1 and ��
2, ��

1 and �u
2,

respectively.
Our results here can be summarized as the following

theorem.

Theorem 1 When a convex rigid object is grasped by two
contact points with friction in 2D space, minimize the norm of
the contact force vector by the object orientation. Then, there
are five candidates for the local minimal point, as shown in
Fig. 6. In each posture, the CoM of the object is

A. Above the contact point p2.
B. Above or below the intersection point of friction cone’s

sides pul .
C. Below the intersection point of friction cone’s sides puu.

D. Above or below the intersection point of friction cone’s
sides plu .

E. Above the contact point p1.

The local minimum point is selected from these candidates
based on the spatial relation among the friction cones and
the CoM of the object as follows:

The local minimum points are

(a) A, C, E, if both friction cones include the CoM of the
object.
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(b) B, C, E, if the friction cone of the contact point p1 include
the CoM of the object, but the other does not.

(c) A, C, D, if the friction cone of the contact point p2 include
the CoM of the object, but the other does not.

(d) B, C, D, if neither friction cones include the CoM of the
object.

Each case is illustrated in the upper side of Fig. 7. The graphs
in the lower side shows the typical shape of the function
αmin(θ) representing the relations of the object orientation to
the minimally required internal force. The θmin, θ36, θ34, θ45,
and θmax respectively correspond to the object orientation in
case A, B, C, D, and E, as shown in Fig. 6. Refer to appendix
for detail.

In all the cases except case C, the object is grasped from
the side: our original interest is the case when the object is
grasped from the above. Such a meaningful solution is only
given as the case C. This result is consistent to our numerical
analysis on the special case, grasp of the circular object (Ito
et al. 2007).

4 Case studies

Four sample cases as shown in Fig. 8 are analyzed. In case
(a), the simplest circular object is considered to intuitively
understand the validity of our analysis. In case (b), a rectan-
gular object is pinched up with neighboring edges. A rect-
angular object where one friction cone does not includes its
CoM is addressed in case (c), while one whose CoM is not
included in neither friction cones in case (d). Parameters
in the case studies are arranged in Table 1. In each case,
Mg = 1.

All the αk (k = 1, . . . , 6) as well as the norm of the contact
force vector F are calculated within the range given by (8).

The results of the graphs are depicted in Fig. 9. The graph in
the left side shows αk changing with θ . The feasible solution
α is in the area that is greater than all αk’s (k = 1, . . . , 6).
The minimal norm for these feasible solutions are drawn
at the graph in the right side. Both 1- and 2-norm are cal-
culated for each case. The candidates of the minimal point
that is calculated from the parameters are summarized in
Table 2.

As shown in Fig. 7, θmin, θ34, and θmax become the local
minimal point in the cases (a) and (b), while θ36, θ34, and
θmax does in the case (c), regardless of the norm selection.
When the 1-norm is selected, the smoothness is often dis-
turbed at the point where the sign of F1 or F2 alters. In the
case (d), though θ34 and θ45 are minimal points as shown in
Fig. 7d, θ36 is not strictly speaking. However, it is valid for
the candidate of the minimal point. In all cases, the minimal
point of our interest is given as θ34.

5 Discussion and concluding remarks

In this article, a 2D grasp is analyzed. An object is convex,
rigid, and is grasped with two given contact points with fric-
tion. The object grasp requires some equality conditions, i.e.,
the force balance conditions, as well as some inequality con-
ditions, i.e., the contact point conditions and the contact force
conditions consisting of the normal force conditions and fric-
tion conditions. Among many feasible grasp, the object ori-
entation that minimizes the norm of the contact force vector
is mathematically analyzed. Here, contact force vector is the
one whose element is composed from the normal and friction
force at each contact point.

In the analysis, the solution of the equality conditions are
parameterized at first. Then, the minimal parameter values
are calculated by the piecewise analysis since the norm of
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Fig. 8 Sample studies of the
grasping
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Table 1 Parameters in case
studies p1 p2 φ1 φ2 µ1 µ2

(a) (5
√

3, 5) (−5
√

3, 5) π/3 π/3 1.5 1.0

(b) (5, 4) (−3, 4) π/4 π/4 1.5 2.5

(c) (1, 1) (−1, 1) π/2 π/2
√

3 1/
√

3

(d) (1, 3) (−1, 3) π/2 π/2
√

3 1/
√

3

Table 2 Candidates of minimal
point θmin θmax θ36 θ34 θ45

(a) −2.094 2.094 −2.491 −0.311 2.397

(b) −2.498 2.498 −2.733 0.089 2.594

(c) −2.356 2.356 −1.921 0.261 2.510

(d) −2.820 2.820 −1.006 −0.129 2.742
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Fig. 9 Results of numerical
calculations
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the contact force vector becomes monotonic increasing func-
tion of this parameter. Using the relation between the friction
coefficient and the apex angle of the friction cone effectively,
the following facts are clarified:

– There are five possible object orientations that mini-
mize the magnitude of the contact forces. Two are the
ones where the CoM of the object is located just above
one of the contact points. The remaining three are the
ones where the CoM and the intersection point of the
sides of two friction cones align vertical on the gravity
line.

– The spatial relation among the CoM of the object and
friction cones determines which type of minimal point
appears in the range where the object is grasped from
above.

– The meaningful local minimal point where the object is
grasped from above is the posture where the intersection
point of the upper sides of each friction cone at two con-
tact points is located in opposite direction of the gravity
from the CoM of the object.

An analytical approach in this article elucidates one sig-
nificant result; “an object is grasped with minimal gripping
power when the intersection point of the friction conefs sides
and the CoM of the object aligns in the vertical direction”,
which corresponds to the last one of the above three facts.
This result may be applied to a hand rehabilitation train-
ing protocol for week gripping-force patients, or an effi-
cient robot’s grasping task planning. However, to understand
a human grasping strategy, some verification experiments
based on human measurements are needed. It is convenient
for the discussion of its validness to reinterpret it as follows;
”an object is grasped with minimal gripping power in the
situation where two contact points are about to slip at the
same time.” The meaningful minimal point of the norm of
the contact force vector is θ34, in which both contact points
P1 and P2 are about to slip, because this point is determined
as the intersection point of α3, the curve on which the con-
tact point P1 is about to slip, and α4, the curve for P2. Now
let us consider the case where we reduce gripping power
during the grasp with frictions. If one of the contact points
comes near to slip, we will avoid it by adjusting the object
orientation—so we will for another contact point; thus, final
situation is the one where two contact points just start to
slip simultaneously. This is the same as the above reinter-
pretation, implying that our result seems to be valid from
our experiences. Of course, to ensure its rightness, the rigid
verification including accurate measurement of, e.g., friction
forces, is required.

In addition, we extend this analysis to the 3D grasp, and to
the effective manipulation of the object requiring less contact
forces as our future studies.

Appendices

A Parameterization of equality solution

The general solution of the equality (4) is given as

F = L† M + (I − L†L)κ (17)

where L† is a pseudo-inverse matrix of L that can be cal-
culated as L† = LT (L LT )−1, and κ ∈ R4 is an arbitrary
vector. Let the first term of the right hand side be FT . Then
FT is given from the definition as follows:

FT = Mg

2(x1 + x2)

⎡
⎢⎢⎣

(x1 + x2)s1s + 2(ys − x2c)c1

(x1 + x2)c1s − 2(ys − x2c)s1

−(x1 + x2)s2s − 2(ys + x1c)c2

−(x1 + x2)c2s + 2(ys + x1c)s2

⎤
⎥⎥⎦ (18)

On the other hand, the second term of the right hand side is a
vector that exists in KerL , the kernel space of the matrix L .
The dimension of the KerL is one since rank L = 3. Thus,
the second term is written as follows:

(I − L†L)κ = αFN (19)

FN = Mg

2(x1 + x2)

⎡
⎢⎢⎣

s1

c1

s2

c2

⎤
⎥⎥⎦ (20)

Here, α is a scalar value that is proportional to the magnitude
of the internal force exerted to the object, and FN is a vector
that satisfies the next two equations.

L FN = 0 (21)

FT
T FN = 0 (22)

From the definition of this section, the solution of the equality
(4) is expressed, using FT and FN , as

F = FT + αFN (23)

B Lower limit calculation for each inequality

In this section, the calculations of the Step 2 in Sect. 3.1 are
presented. The αk(θ) (k = 1, . . . , 6) defined in Sect. 3.1 is
calculated in order. At first, α1(θ) is considered. From (23),
N1 is given as

N1 = Mg

2(x1 + x2)
((x1 + x2)s1s − 2(x2c − ys)c1 + αs1)

(24)

This equation leads to the lower limit of α that satisfies the
inequality (i). So does it for α2(θ). Consequently, the follow-
ing results are obtained:

123



224 Biol Cybern (2009) 101:215–226

α > αk(θ) (k = 1, 2) (25)

α1(θ) = −(x1 + x2)s + 2(x2c − ys) cot φ1 (26)

α2(θ) = +(x1 + x2)s + 2(x1c + ys) cot φ2 (27)

Next, α3(θ) is considered. From (23), F1 is given as

F1 = Mg

2(x1 + x2)
((x1 + x2)c1s − 2(ys − x2c)s1 + αc1)

(28)

The equation (24) and (28) lead to the lower limit of α that
satisfies the inequality (iii). So does it for α4(θ), α5(θ), and
α6(θ). The results become

α > αk(θ) (k = 3, . . . , 6) (29)

α3(θ) = −(x1 + x2)s + 2(x2c − ys) · c1µ1 + s1

s1µ1 − c1

= −(x1 + x2)s − 2(x2c − ys) tan(φ1 + ξ1) (30)

α4(θ) = +(x1 + x2)s + 2(x1c + ys) · c2µ2 + s2

s2µ2 − c2

= +(x1 + x2)s − 2(x1c + ys) tan(φ2 + ξ2) (31)

α5(θ) = −(x1 + x2)s + 2(x2c − ys) · c1µ1 − s1

s1µ1 + c1

= −(x1 + x2)s − 2(x2c − ys) tan(φ1 − ξ1) (32)

α6(θ) = +(x1 + x2)s + 2(x1c + ys) · c2µ2 − s2

s2µ2 + c2

= +(x1 + x2)s − 2(x1c + ys) tan(φ2 − ξ2) (33)

In the above calculation, the next relation is used.

− ciµi ± si

siµi ∓ ci
= si ± ciµi

ci ∓ siµi
=

si
ci

± µi

1 ∓ si
ci

µi

= tan φi ± tan ξi

1 ∓ tan φi tan ξi
= tan(φi ± ξi ) (34)

Here, the Eq. 2 is applied to this calculation.

C Piecewise analysis for feasible solution

Based on some piecewise analyses, the magnitude relation
among αk(θ) (k = 1, . . . , 6) is discussed. This process corre-
sponds to the step 3 in Sect. 3.1. Firstly, the following relation
holds.

Lemma 1 Let θ1 = arctan2(x2, y)(> 0). α5(θ) < α1(θ) <

α3(θ) holds in the range θmin < θ < θ1, while α3(θ) <

α1(θ) < α5(θ) does in the range θ1 < θ < θmax.

Proof Calculating α3 −α1 (or α5 −α1), the following equa-
tion is obtained

2(x2c − ys)(
c1µ1 ± s1

s1µ1 ∓ c1
− c1

s1
)

= ∓ 2

s1(s1µ1 ∓ c1)

√
x2

2 + y2 sin(θ − θ1) (35)

Here, sin(θ − θ1) > 0 in θ1 < θ < θmax and sin(θ − θ1) < 0
in θmin < θ < θ1, because of s1 > 0 and (3). Thus, the
lemma is proved. ��
The next lemma also holds from the similar calculations.

Lemma 2 Let θ2 = arctan2(x1, y)(> 0). α4(θ) < α2(θ) <

α6(θ) holds in the range θmin < θ < −θ2, while α6(θ) <

α2(θ) < α4(θ) holds in the range −θ2 < θ < θmax.

From the above two lemmas, the magnitude of αi has only
to be compared in the next combinations:

– α3 versus α6 in the range θmin < θ < −θ2.
– α3 versus α4 in the range −θ2 < θ < θ1.
– α4 versus α5 in the range θ1 < θ < θmax.

Between above two αk’s, the following lemmas are satisfied.

Lemma 3 There exists θ36 such that α6(θ) < α3(θ) in the
range θ36 < θ < θ36 + π , while α3(θ) < α6(θ) in the range
θ36 − π < θ < θ36 This θ36 is given as follows:
θ36 = arctan2(B36, A36) (36)

where

A36 = y (tan(φ1 + ξ1) + tan(φ2 − ξ2)) − (x1 + x2) (37)

B36 = x2 tan(φ1 + ξ1) − x1 tan(φ2 − ξ2) (38)

Lemma 4 There exists θ45 such that α4(θ) < α5(θ) in the
range θ45 < θ < θ45 + π , while α5(θ) < α4(θ) in the range
θ45 − π < θ < θ45. This θ45 is given as follows:

θ45 = arctan2(B45, A45) (39)

where

A45 = y (tan(φ1 − ξ1) + tan(φ2 + ξ2)) − (x1 + x2) (40)

B45 = x2 tan(φ1 − ξ1) − x1 tan(φ2 + ξ2) (41)

Lemma 5 There exists θ34 such that α3(θ) < α4(θ) in the
range θ34 < θ < θ34 + π , while α4(θ) < α3(θ) in the range
θ34 − π < θ < θ34. This θ34 is given as follows:

θ34 = arctan2(B34, A34) (42)

where

A34 = (x1 + x2) − y (tan(φ1 + ξ1) + tan(φ2 + ξ2)) (43)

B34 = x1 tan(φ2 + ξ2) − x2 tan(φ1 + ξ1) (44)

The proof for the Lemma 5 is shown below:

Proof From (30) and (31), we obtain

α4 − α3

= 2 {(x1 + x2) − y (tan(φ1 + ξ1) + tan(φ2 + ξ2))} sin θ

−2 {x1 tan(φ2 + ξ2) − x2 tan(φ1 + ξ1)} cos θ

= 2(A34 sin θ − B34 cos θ)

= 2
√

A2
34 + B2

34 sin(θ − θ34) (45)

Then, it is trivial from the above equation. ��
The Lemmas 3 and 4 can be proven in the same way.
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D Analysis of minimal solution

Finally, the calculations of the last Step 4 in Sect. 3.1 are
described. The five candidates of the local minimum point
are obtained: θ36, θ34, θ45, and the boundaries of the ana-
lyzed range θmin, θmax. How are these candidates physically
explained, and what magnitude relations are satisfied among
them?

At first, the next lemma is obtained regarding to θ34.

Lemma 6 When the gravitational direction is given as θ34,
the CoM of the object and puu vertically align on the gravity
line in the task coordinate frame. Then, puu is positioned
above the CoM of the object.

Proof Let the relative angle to the point puu from the nega-
tive direction of the y axis to θuu . Then, the equation θuu =
θ34 ±π should be derived since the origin of the object coor-
dinate frame is set to the CoM of the object.

puu(Xuu, Yuu) is located on the line �u
1 that passes through

the point (x1, y) and whose slope is given as tan(π
2 − φ1 −

ξ1) = cot(φ1 + ξ1). Thus, Xuu and Yuu satisfy the next equa-
tion.

Yuu − y = cot(φ1 + ξ1)(Xuu − x1) (46)

puu is also located on the line �u
2 that passes through the point

(−x2, y) and whose slope is given as tan(φ2 + ξ2 − π
2 ) =

− cot(φ2 + ξ2). So, in the same way,

Yuu − y = − cot(φ2 + ξ2)(Xuu + x2) (47)

From the above two equation, X and Y are given as follows:

Xuu = x1 tan(φ2 + ξ2) − x2 tan(φ1 + ξ1)

tan(φ1 + ξ1) + tan(φ2 + ξ2)
(48)

Yuu = y(tan(φ1 + ξ1) + tan(φ2 + ξ2)) − (x1 + x2)

tan(φ1 + ξ1) + tan(φ2 + ξ2)
(49)

Now, let Tuu = tan(φ1 + ξ1) + tan(φ2 + ξ2), then Tuu < 0
from (1). Thus, θuu is given by

θuu = arctan2(Xuu,−Yuu) = arctan2

(
B34

Tuu
,−

(−A34

Tuu

))

= arctan2(−B34,−A34) = θ34 ± π (50)

Now, lemma is proven. ��
In the similar way, the following lemmas holds.

Lemma 7 When the gravitational direction is given as θ36,
pul and the CoM of the object vertically align on the gravity
line in the task coordinate frame. If the slope of ��

2 is negative
as well as greater than that of �u

1 , pul is positioned above the
CoM. Otherwise, pul is positioned below the CoM.

Lemma 8 When the gravitational direction is given as θ45,
plu and the CoM of the object vertically align on the gravity
line in the task coordinate frame. If the slope of ��

1 is positive
as well as less than that of �u

2 , plu is positioned above the
CoM. Otherwise, plu is positioned below the CoM.

Because of the symmetry, only the proof of Lemma 7 is
shown.

Proof Let the relative angle to the point pul from the nega-
tive direction of the y axis to θul . And, let Tul = tan(φ1 +
ξ1) + tan(φ2 − ξ2)( �= 0). Note that, if the slope of ��

2 is neg-
ative and greater than that of �u

1, then Tul > 0. Otherwise
Tul < 0. Because pul(Xul , Yul) is located on �u

1 as well as
��

2, the next two equations hold.

Yul − y = cot(φ1 + ξ1)(Xul − x1) (51)

Yul − y = − cot(φ2 − ξ2)(Xul + x2) (52)

These equations are solved as

Xul = x1 tan(φ2 − ξ2) − x2 tan(φ1 + ξ1)

tan(φ1 + ξ1) + tan(φ2 − ξ2)
(53)

Yul = y(tan(φ1 + ξ1) + tan(φ2 − ξ2)) − (x1 + x2)

tan(φ1 + ξ1) + tan(φ2 − ξ2)
(54)

Then, θul is given by

θul = arctan2(Xul ,−Yul)

= arctan2

(
− B36

Tul
,− A36

Tul

)
(55)

If Tul > 0, θul = arctan2(−B36,−A36) = θ36±π , implying
that pul is located in the opposite direction of the gravity. On
the contrary, If Tul < 0, θul = θ36, and so pul is located in
the same direction of the gravity. ��
Note that, when Tul = 0, �u

1, and ��
2 are parallel. Thus, pul

does not exist. In this case, the gravitational direction θ36

become parallel to �u
1 as well as ��

2.
From the above lemmas, the following magnitude relation

can be obtained in a graphical manner,

− (θ1 + π) < θ36 < −θ1 < θ34 < θ2 < θ45 < θ2 + π (56)

Using the above all facts, αmin(θ), which is defined in the
step 3 of Sect. 3.1, is given as follows:

αmin(θ) =

⎧⎪⎪⎨
⎪⎪⎩

α6(θ) (θ ≤ θ36)

α3(θ) (θ36 ≤ θ ≤ θ34)

α4(θ) (θ34 ≤ θ ≤ θ45)

α5(θ) (θ45 ≤ θ)

(57)

Furthermore, the magnitude relation between θ36 and θmin

as well as θ45 and θmax is classified into four cases accord-
ing to the spatial relation among the friction cones and the
CoM of the object. This classification is illustrated in Fig. 6.
Finally, the theorem in Sect. 3.2 is obtained as for the object
orientation minimizing the gripping power.
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