
Mathematical Analysis on the Relation
between Object Orientation and Contact
Forces in the 2D Grasp with Frictions

Satoshi Ito ∗ Shouta Takeuchi ∗∗ Minoru Sasaki ∗∗∗

∗ Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
(e-mail: satoshi@gifu-u.ac.jp)

∗∗ Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
(e-mail: n3128020@edu.gifu-u.ac.jp)

∗∗∗ Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
(e-mail: sasaki@gifu-u.ac.jp)

Abstract: This paper reports an analysis of 2D grasp where a convex rigid object is grasped by
two contact points with frictions. The purpose is to find the object orientation that minimizes
the norm of the contact force vector, each element of which is composed from the normal and
friction force at each contact point. The formulation of this problem includes some equality or
inequality conditions. In the analysis, the solution of the equality conditions is parameterized at
first. Based on the fact that the norm of the contact force vector becomes monotonic increasing
function of this parameter, the minimal parameter values are calculated by means of the
piecewise analysis. Using the relation between the friction coefficient and the apex angle of
the friction cone effectively, the following result is obtained: the norm of the contact force takes
a local minimal value at the situation that the intersection point of the upper sides of each
friction cones at two contact points is located in the opposite direction of the gravity from the
center of mass of the grasped object.
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1. INTRODUCTION

Frictions are important to grasp an object. Although the
grasp with friction would not be more reliable than the
one based on the Form-Closure (Bicchi (1995)), it contains
the possibility for skillful manipulation of the grasped
object. From this point of view, the grasp with frictions
are focused on in this paper.

Many factors must be determined in the planning of the
grasp: position of the contact points, magnitude of the
internal force, joint torques of the grasping mechanisms,
and so on. Among them, the orientation of the grasped
object is addressed. In some tasks like a material handling
operation, the object posture can be chosen arbitrarily.
Thus, the determination of the optimal object orientation
is a meaningful issue from the viewpoint of the task plan-
ning. Many papers treat the grasping problem from the as-
pect of the optimization (Shimoga (1996); Markenscoff and
Papadimitriou (1989); Mirtich and Canny (1994); Man-
gialardi et al. (1996); Watanabe and Yoshikawa (2003);
Cheng and Orin (1990); Liu (1999); Ding et al. (2001); Al-
Gallaf (2006); Dubey et al. (1999)). However, the object
orientation is seldom selected as the optimization factors.

In this paper, the relation between object orientation
and the contact forces are discussed to find the object
orientation that requires less contact forces.

2. GRASP WITH FRICTIONS

2.1 Assumptions

The following assumptions allow us to solve the problem
here in an analytical, not numerical, manner.

• The object is grasped by the two contact points
within the 2D space.

• The object is convex and rigid.
• The shape of the object is smooth at the contact

points.
• The contacts on the object are the point contacts with

the frictions.

As the evaluation of the object orientation, the magnitude
of the contact forces is selected as the evaluation value.
Grasping with less contact forces enables us to efficiently
maintain the grasped posture with small grasping forces.
And it avoid to break the object by means of larger forces
than necessary.

2.2 Coordinate frame for analysis

The object grasped by two contact points in the 2D space
is illustrated in Fig. 1(a). The object posture with respect
to the gravitational direction is represented by θ in this
figure. The problem is formulated in the following way:
how much value of the θ should be chosen when grasping
this object.
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Fig. 1. Coordinate frames.
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Fig. 2. Cases where the object can be grasped or not be grasped.

This problem is easily described in the object coordinate
frame whose origin is set to the CoM of the object
and whose y axis is defined to be orthogonal to the
line connecting between two contact points. The object
orientation in the task coordinate frame corresponds to the
relative direction of the gravity in the object coordinate
frame Fig. 1(b), i.e., the angle from the negative direction
of the y axis. Note that θ is the same angle in Fig. 1(a)
and (b).

In the object coordinate frame, the coordinate of the two
contact points are denoted by p1 = (x1, y)T and p2 =
(−x2, y)T (�= p1), and the angle of the normal direction at
the contact points from the negative direction of the y axis
is φ1 (CW) and φ2 (CCW). Here, x1 > 0, x2 > 0, y > 0,
and 0 < φ1 ≤ π/2, 0 < φ2 ≤ π/2. The contact forces are
orthogonally decomposed to the the normal force N1 or
N2 and the friction F1 or F2 at each contact point.

2.3 Formulation

Conditions on contact points The positional relation
of the friction cones allows us to determine whether the
object can be grasped by the given two contact points or
not (Nguyen (1988)). If the friction cones contain the other
contact point each other, then the object can be grasped
by these two contact points.

This conditions is formulated as follows in the object
coordinate frame. As shown in Fig. 2, the apex angle of
the friction cone at the contact point p1 is set to 2ξ1. The
object can be grasped, if and only if the angle between
the upper side of the friction cone �u

1 and the negative
direction of the y axis is greater than π/2 as well as the
angle between the lower side of the friction cone ��

1 and
the negative direction of the y axis is less than π/2. This
condition is described by the inequality

φ1 − ξ1 <
π

2
< φ1 + ξ1 (1)

So is it for the contact point p2, and the condition is given
as

φ2 − ξ2 <
π

2
< φ2 + ξ2 (2)

These conditions can be rewritten by using the friction
coefficient μ1 and μ2 at each contact point. The following

relation holds between the apex angle and the friction
coefficient.

tan ξi = μi (i = 1, 2) (3)

Thus, subtract φ1 or φ2 from (1) or (2), apply tangent
operation for the result, and use the relation (3). Then,

s1μ1 + c1 > 0, s1μ1 − c1 > 0 (4)

is obtained from (1), and

s2μ2 + c2 > 0, s2μ2 − c2 > 0 (5)

is from (2). Here, s1 = sin φ1, c1 = cos φ1, s2 = sin φ2,
and c2 = cos φ2. In the following sections, the analysis
is restricted to the grasp that satisfies the contact point
conditions (4)-(5).

Force balance conditions In the 2D grasp, not only
the force in the x and y direction but also the moment
within the plane including both coordinate axes must
be balanced. This balancing condition is described using
matrix as

LF = M (6)

where the contact force vector F and the gravitational
vector M is defined as follows:

F = [ N1 F1 N2 F2 ]T (7)

M = [−Mgs Mgc 0 ]T (8)

Here, M is mass of the object, g is the gravitational
acceleration, s = sin θ and c = cos θ. The matrix L is
called grasp matrix, and described as

L =

⎡
⎢⎣
−s1 −c1 s2 c2

−c1 s1 −c2 s2

L31 L32 L33 L34

⎤
⎥⎦ (9)

L31 = −c1x1 + s1y, L32 = s1x1 + c1y

L33 = c2x2 − s2y, L34 = −s2x2 − c2y

Grasp conditions This paper has interest in the grasp
with frictions. In the grasp illustrated in Fig. 3(a), the
friction force is not crucial for lifting up the object, because
the object is just overridden onto the two contact points.
These cases can be excluded by limiting the range of the
gravitational direction θ to

θmin = −π + tan−1 x2

y
< θ < π − tan−1 x1

y
= θmax (10)

as shown in Fig. 3(b). This is necessary condition for
grasping the object.

Unilateral conditions The normal force works to push,
not pull, the object. From the definition of the normal
force direction, this condition is described as

N1 > 0 (11)

N2 > 0 (12)
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Fig. 3. Cases where the object can be grasped or not be grasped. The range in the case (b) is considered.

Coulomb conditions To keep the contact without slip-
ping, tangential forces cannot become greater than the
maximum static friction force. It holds if |Fi| < μiNi (i =
1, 2). This condition can be decomposed to the following
four inequalities.

μ1N1 − F1 > 0 (13)

μ2N2 − F2 > 0 (14)

μ1N1 + F1 > 0 (15)

μ2N2 + F2 > 0 (16)

2.4 Problem description

The problem is defined as follows:
Definition 1. Under the contact point condition (4)-(5),
find θ within the range (10) that minimize the norm of
the contact force vector F such that satisfies the force
balance condition (6) expressed by the equations as well
as the contact force conditions (11)-(16) expressed by the
inequalities.

3. ANALYSIS

3.1 Procedure

The problem defined in the above section is one class
of the nonlinear optimization problems. It seemed to be
easily solved by deriving the KKT conditions from the
Lagrange function. However, this problem is not so, be-
cause the contact force vector F is not a direct optimizing
parameter, but should be indirectly optimized by use of
the object orientation θ. This is a reason why the straight-
forward method is not available. Thus, the following steps
are taken:

(i) Parameterization of equality solution: The so-
lution of the force balance condition given by equality
(6) can be described using a parameter α. Select-
ing the expressions appropriately, α can express an
amount that is proportional to the magnitude of the
internal force.

(ii) Lower limit calculation of parameter satisfying
each inequality: The parameter α must be selected
so that all the inequalities conditions (11)-(16) should
hold. First of all, the lower limit of the parameter α
that satisfies each one of the inequality (11)-(16) is
calculated among the solutions of the force balance
equation. They are denoted by αi(θ) (i = 1, · · · , 6),
respectively.

(iii) Piecewise analysis on lower limit of parameter
satisfying all the inequalities: Next, the function
αmin(θ) is defined by finding the minimal parameter
α greater than all the αi(θ) (i = 1, · · · , 6) for each
posture θ. This is equivalent to selecting the maximal
value among αi (i = 1, · · · , 6) in the piecewise range
of the θ. Now, the function αmin(θ) satisfies the
equalities (6) as well as all the inequalities (11)-(16).

(iv) Detection of the minimal parameters: The
smaller α is, the shorter the norm of the contact
force vector F is, because this norm is a monotonic
increasing function of the parameter α. Thus, the
minimal point of the function αmin(θ) is calculated
that corresponds to the optimal orientation of the
grasped object.

3.2 Parameterization of equality solution

The general solution of the equality (6) is given as

F = L†M + (I − L†L)κ (17)

where L† is a pseudo-inverse matrix of L that can be
calculated as L† = LT (LLT )−1, and κ ∈ R4 is an arbitrary
vector. Let the first term of the right hand side to be F T .
Then F T is given from the definition as follows:

F T =
Mg

2(x1 + x2)

⎡
⎢⎢⎢⎢⎣

(x1 + x2)s1s + 2(ys − x2c)c1

(x1 + x2)c1s − 2(ys − x2c)s1

−(x1 + x2)s2s − 2(ys + x1c)c2

−(x1 + x2)c2s + 2(ys + x1c)s2

⎤
⎥⎥⎥⎥⎦ (18)

On the other hand, the second term of the right hand
side is a vector that exists in KerL, the kernel space of
the matrix L. The dimension of the KerL is one since
rank L = 3. Thus, the second term is written as follows:

(I − L†L)κ = αF N (19)

F N =
Mg

2(x1 + x2)

⎡
⎢⎢⎢⎢⎣

s1

c1

s2

c2

⎤
⎥⎥⎥⎥⎦ (20)

Here, α is a scalar value that is proportional to the
magnitude of the internal force exerted to the object, and
F N is a vector that satisfies the next two equations.

LF N = 0 (21)

F T
T F N = 0 (22)
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From the definition of this section, the solution of the
equality (6) is expressed, using F T and F N , as

F = F T + αF N (23)

3.3 Lower limit of each inequality solution

Next, the function αi(θ) (i = 1, · · · , 6) defined in the
section 3.1 is calculated.

(a) N1 > 0

From (23), N1 is given as

N1 =
Mg

2(x1 + x2)
((x1 + x2)s1s − 2(x2c − ys)c1 + αs1)(24)

From this result, the range of α that satisfies the inequality
(11) becomes

α > α1(θ) (25)
α1(θ) = −(x1 + x2)s + 2(x2c − ys) cot φ1 (26)

(b) N2 > 0

From the similar calculations, the following result is ob-
tained.

α > α2(θ) (27)
α2(θ) = (x1 + x2)s + 2(x1c + ys) cot φ2 (28)

(c) μ1N1 − F1 > 0

From (23), F1 is given as

F1 =
Mg

2(x1 + x2)
((x1 + x2)c1s − 2(ys − x2c)s1 + αc1)(29)

From this result, the range of α that satisfies the inequality
(13) becomes

α > α3(θ) (30)

α3(θ) =−(x1 + x2)s + 2(x2c − ys)
c1μ1 + s1

s1μ1 − c1

=−(x1 + x2)s − 2(x2c − ys) tan(φ1 + ξ1) (31)
In the above calculation, the next relation is used.

−ciμi ± si

siμi ∓ ci
=

si ± ciμi

ci ∓ siμi
=

si

ci
± μi

1 ∓ si

ci
μi

=
tanφi ± tan ξi

1 ∓ tanφi tan ξi
= tan(φi ± ξi) (32)

Here, i = 1, 2.

(d) μ2N2 − F2 > 0

From the similar calculations, the following result is ob-
tained.

α > α4(θ) (33)

α4(θ) = (x1 + x2)s + 2(x1c + ys)
c2μ2 + s2

s2μ2 − c2

= (x1 + x2)s − 2(x1c + ys) tan(φ2 + ξ2) (34)

(e) μ1N1 + F1 > 0

From the similar calculations, the following result is ob-
tained.

α > α5(θ) (35)

α5(θ) =−(x1 + x2)s + 2(x2c − ys)
c1μ1 − s1

s1μ1 + c1

=−(x1 + x2)s − 2(x2c − ys) tan(φ1 − ξ1) (36)

(f) μ2N2 + F2 > 0

From the similar calculations, the following result is ob-
tained.

α > α6(θ) (37)

α6(θ) = (x1 + x2)s + 2(x1c + ys)
c2μ2 − s2

s2μ2 + c2

= (x1 + x2)s − 2(x1c + ys) tan(φ2 − ξ2) (38)

3.4 Piecewise analysis on the lower limit of all inequalities

The function αmin(θ) greater than all the αi(θ) (i =
1, · · · , 6) is calculated. Then, the following relation holds.

Lemma 1. Let θ1 = arctan2(x2, y) > 0. α5(θ) < α1(θ) <
α3(θ) holds in the range θmin = −π + θ1 < θ < θ1, while
α3(θ) < α1(θ) < α5(θ) does in the range θ1 < θ < θmax.

Note that arctan2(Y, X) returns tan−1(Y/X) in the range
[−π, π].

Proof 1. Calculating α3 − α1 (or α5 − α1), the following
equation is obtained

2(x2c − ys)(
c1μ1 ± s1

s1μ1 ∓ c1
− c1

s1
)

=∓ 2
s1(s1μ1 ∓ c1)

√
x2

2 + y2 sin(θ − θ1) (39)

Here, 0 < φ1 < π/2, the numerator is positive because of
(4), sin(θ − θ1) > 0 in θ1 < θ < θmax and sin(θ − θ1) < 0
in θmin < θ < θ1. Thus, the lemma is proved.

The next lemma also holds from the similar calculations.

Lemma 2. Let θ2 = arctan2(x1, y) > 0. α4(θ) < α2(θ) <
α6(θ) holds in the range θmin < θ < −θ2, while α6(θ) <
α2(θ) < α4(θ) holds in the range −θ2 < θ < π−θ2 = θmax.

From the above two lemmas, the magnitude of next two αi

have only to be compared within the following three range:
α3 versus α6 in the range θmin < θ < −θ2, α4 versus α5

in the range θ1 < θ < θmax, and α3 versus α4 in the range
−θ2 < θ < θ1. Regarding to these relations, the following
lemmas are satisfied.

Lemma 3. There exists a θ36 such that α6(θ) < α3(θ) in
the range θ36 < θ < θ36 + π, while α3(θ) < α6(θ) in the
range θ36 − π < θ < θ36. This θ36 is given as follows:

θ36 = arctan2(B36, A36) (40)

where

A36 = y (tan(φ1 + ξ1) + tan(φ2 − ξ2)) − (x1 + x2) (41)

B36 = x2 tan(φ1 + ξ1) − x1 tan(φ2 − ξ2) (42)
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Lemma 4. There exists a θ45 such that α4(θ) < α5(θ) in
the range θ45 < θ < θ45 + π, while α5(θ) < α4(θ) in the
range θ45 − π < θ < θ45. This θ45 is given as follows:

θ45 = arctan2(B45, A45) (43)

where
A45 = y (tan(φ1 − ξ1) + tan(φ2 + ξ2)) − (x1 + x2) (44)

B45 = x2 tan(φ1 − ξ1) − x1 tan(φ2 + ξ2) (45)

Lemma 5. There exists a θ34 such that α3(θ) < α4(θ) in
the range θ34 < θ < θ34 + π, while α4(θ) < α3(θ) in the
range θ34 − π < θ < θ34. This θ34 is given as follows:

θ34 = arctan2(B34, A34) (46)

where
A34 = (x1 + x2) − y (tan(φ1 + ξ1) + tan(φ2 + ξ2)) (47)

B34 = x1 tan(φ2 + ξ2) − x2 tan(φ1 + ξ1) (48)

The proof for the lemma 5 is shown below:

Proof 2. From (31) and (34),

α4 − α3

= 2 {(x1 + x2) − y (tan(φ1 + ξ1) + tan(φ2 + ξ2))} sin θ

−2 {x1 tan(φ2 + ξ2) − x2 tan(φ1 + ξ1)} cos θ

= 2(A34 sin θ − B34 cos θ)

= 2
√

A2
34 + B2

34 sin(θ − θ34) (49)

It is trivial from the above equation.

3.5 Detection of the minimal parameters

The parameter αmin that satisfies equality (6) as well as
all the inequalities (11)-(16) becomes a function of the θ,
and now it is given as the following equations.

αmin(θ) =

⎧⎪⎨
⎪⎩

α6(θ) (θ ≤ θ36)
α3(θ) (θ36 ≤ θ ≤ θ34)
α4(θ) (θ34 ≤ θ ≤ θ45)
α5(θ) (θ45 ≤ θ)

(50)

Accordingly, the orientations that could be the minimal
point are: θ36, θ34, and θ45, as shown in Fig. 4. The relation
θ36 < θ34 < θ45 can be obtained graphically from the
configuration of two friction cones.

Then, what is the physical situation in these minimal
point? From the result of the analysis on the point θ34,
the next lemma is obtained.

Lemma 6. When the gravitational direction is given as
θ34 in the object coordinate frame, the intersection point
of two upper sides of friction cone is faced in the opposite
direction of the gravity with respect to the CoM of the
object in the task coordinate frame.

p1p2

φ1
φ2

ξ1

x1- x2

yξ2
ξ2
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1

ul
2
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1

uu
p

lu
p
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p

ll
2
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Fig. 5. relative orientation of friction-cones’ intersection point.

Proof 3. In Fig. 5, the upper side of the friction cone of
the contact point p1 is represented as the line �1u that goes
through the point (x1, y) and whose slope is tan(π

2 − φ1 −
ξ1) = cot(φ1 + ξ1). It is expressed by

Y − y = cot(φ1 + ξ1)(X − x1) (51)

On the other hand, the upper side of the friction cone of
the contact point p2 is represented as the line �2u that goes
through the point (−x2, y) and whose slope is tan(φ2 +
ξ2 − π

2 ) = − cot(φ2 + ξ2). It is also expressed by

Y − y = − cot(φ2 + ξ2)(X + x2) (52)

The intersection point of these two lines is:

X =
x1 tan(φ2 + ξ2) − x2 tan(φ1 + ξ1)

tan(φ1 + ξ1) + tan(φ2 + ξ2)
(53)

Y =
y(tan(φ1 + ξ1) + tan(φ2 + ξ2)) − (x1 + x2)

tan(φ1 + ξ1) + tan(φ2 + ξ2)
(54)

Now, let T = tan(φ1 + ξ1)+tan(φ2 + ξ2), then T < 0 from
(1)-(2). Thus, the angle from the negative direction of y
axis θc is given by

θc = arctan2(X,−Y ) = arctan2
(

B34

T
,−(

−A34

T
)
)

= arctan2(−B34,−A34) = θ34 ± π (55)

Namely, the orientation of the friction cone intersection
point is just the opposite direction of the gravitational
direction θ34.

In the similar way, the following lemmas holds.

Lemma 7. Let pu� the intersection point of �u
1 (the upper

side of friction cone at the contact point p1) and ��
2 (the

lower side of friction cone at the contact point p2). If
the gravitational direction is given as θ36 in the object
coordinate frame, then pu� and the CoM of the object
aligns in the gravitational direction in the task coordinate
frame.

Lemma 8. Let p�u the intersection point of ��
1 (the lower

side of friction cone at the contact point p1) and �u
2 (the

upper side of friction cone at the contact point p2). If
the gravitational direction is given as θ45 in the object
coordinate frame, then p�u and the CoM of the object
aligns in the gravitational direction in the task coordinate
frame.

These results are illustrated in Fig. 6. These could be three
possible minimal points: θ36, θ34, and θ45 though whether
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θ36 and θ45 are in the range (10) or not must be discussed
more in our future works. However, θ36, θ45, θmax and θmin

is a solution where the object is grasped from the side.
Accordingly, the meaningful solution is only θ34 where the
object is grasped from above.

The analysis in this section is summarized to the next
theorem:

Theorem 1. Consider a 2D grasp where a convex rigid
object is grasped by two contact points with frictions.
The norm of the contact force is a locally minimal at the
posture where the intersection point of the upper sides
of each friction cones at two contact points is located in
the opposite direction of the gravity from the CoM of the
object.

Unfortunately, the grasp with the locally minimal contact
force norm does not possess enough robustness: slight
posture deviation will make a slip on the grasped object.
However, this result indicates that: when the gripping
forces are limited, we should try several object orienta-
tions. Then, we may be able to lift it up by grasping it
from the upper side. (Of course, the gripping forces must
be sufficient then.)

4. CONCLUSIONS

In this paper, a 2D grasp is considered where a convex
rigid object is grasped by two contact points with frictions.
Such a grasp required some equality conditions, i.e., the
force balance conditions, as well as some inequality con-
ditions, i.e., the contact point conditions and the contact
force conditions consisting of the unilateral and Coulomb
conditions. The purpose of this paper is to find the posture
that minimize the norm of the contact force vector whose
element is composed from the normal and friction force at
each contact point.

In the analysis, the solution of the equality conditions
are parameterized at first. Then, the minimal parameter

values are calculated by the piecewise analysis since the
norm of the contact force vector becomes monotonic
increasing function of this parameter.

Using the relation between the friction coefficient and the
apex angle of the friction cone effectively, the following
fact becomes clear: the norm of the contact force takes a
local minimal value at the posture where the intersection
point of the upper sides of each friction cones at two
contact points is located in the opposite direction of the
gravity from the CoM of the object. This fact coincides our
numerical analysis on the grasp of the circular object (Ito
et al. (2007)). As a future works, we extend this analysis
to the 3D grasp, and to the effective manipulation of the
object requiring less contact forces.
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