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ABSTRACT 

Distributed system is usually constructed from many ho- 
mogeneous subsystems with their local couplings, and dose 
not have a control center. From the structural similarity 
to biological systems, the distributed system is expected to 
possess the flexibility or adaptability. To construct a dis- 
tributed system, two problems arise: One is how to control 
the whole system by only use local interactions based on 
local couplings, and another is how to design the adapta- 
tion mechanisms. To the former problem, a method based 
on the gradient system has been discussed in our previous 
paper. In this paper, we develop this method further and 
propose an new adaptation rule executable in the subsys- 
tems with local couplings. The essence of the adaptation 
is to adjust the desired system states so that interactions 
among subsystems are made small. We show a simulation 
result of a coupled oscillator system where the oscillation 
pattern changes adaptively with environmental conditions. 

1. INTRODUCTION 

Autonomous systems can be found in many natural real 
systems and applications: In a pattern generator in animal 
locomotion, several neural oscillators are locally coupled 
in the spinal cord and their local interactions produces a 
suitable rhythms necessary to walk, swim, or fly. We have 
proposed a mathematical model of locomotion pattern gen- 
erator and described an adaptive behavior of decerebrate 
cats observed on the treadmill[l]. 

Between all two subsystems with coupling, e.g., Si 
and S j ,  a linear functional relation is defined as pk = 
pk (q i ,q j ) ,  where k(k = l , - - - , n )  is the numbering of 
couplings. An example of such functional relations is 
the difference of two subsystem states. When defining 
P = [ P I ,  0 . .  ,pn], the functional relations are described 
as 

P = L Q  (2) 
where L is a matrix in Rnx” 

narmcs, 
A control problem is how to define the subsystem dy- 

4 = f i ( N ( q i ) ) -  (3) 
so that the functional relations P defined by (2) con- 
verge to their desired values pd = k&, - - - ,pdn]. Here, 
it is assumed that the desired relation Pd are set to 
be consistent, i.e., there exists such Q that satisfies an 
algebraic equation LQ = Pd. This condition can be 
expressed as 

(1 - LL’)Pd = 0. (4) 

Here, L’ is a pseudo-inverse of L. 

When P converges to Pd, order will be formed over the 
whole system from a macroscopic view. Here, we call 
such order as “pattern”. The desired pattern pd, how- 
ever, is not always consistent under the variations of 
environmental conditions. In such cases, how to make 
change of the desired pattern should be considered as 
an adaptation problem. 

In this paper, developing our model, we consider a more 
general problem on a control and adaptation of a dis- 
tributed system under the following framework: 

2. PATTERN CONTROL BASED ON 
GRADIENT SYSTEM 

The whole system consists of m homogeneous sub- 
systems {S;}(i = 1 , e . e  ,m). The homogeneousness 
means that the dynamics of subsystems are described 
by a differential equation of the same form. For sim- 
plicity, the state of homogeneous subsystems is ex- 
pressed by one dimensional state variable 4;. Here, 
p u t a v e c t o r Q a s Q = [ q 1 , . . . , q m l T .  

In distributed systems, there are no one-to-all cou- 
plings, in other words, the dynamics of subsystem only 
contain a state variable of the neighboring subsystems. 
To discuss the locality of coupling, denote the neigh- 
bors of Si by N ( q ; ) :  

Subsystem dynamics for gradient  sys tem 

H. Yuasa and M. Ito have solved the above problem based 
on a gradient dynamics[2]. Using vector form, (3) can be 
generally written as 

Q = F ( Q ) .  ( 5 )  

Here, F = [f~,-.*,f,]~. Using (2) and (S), the dynamics 
of P are wntten as 

N ( q i )  = {qt Iqc has coupling with 4; 1 (1) They firstly presented conditions such that (6) are de- 
scribed as not only an autonomous system but also a gra- 
dient system. It is assumed that q; is included in N ( q ; ) .  
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Lemma 1 (H. Yuasa. and M. Ito[2]) The Dynamics of 
P ,  i.e., (6),.is described as an autonomous system, i f  and 
only i f  F in (5) satisfies 

8 F  
a9 L-(I - L'L)  = 0. (7) 

Lemma 2 (H. Yuasa and M. Ito[2]) I f  the dynamics 
of P is  described as a gradient system with a potential func- 
t ion V ( P ) ,  

8V p = - -  
8 P  ' 

then F can be writ ten as 

w h e r e X  = - L T P ,  V x ( X )  = V x ( - L T P )  = V ( P ) ,  and 
Q' is  an  arbitrary vector having the same dimension as 
Q. Conversely, if F is described as (9), then there exist a 
potential funct ion V ( P )  using which the dynamics of P i s  
described as (8). 

Considering the locality of subsystem coupling, they 
demonstrated the following theorem. 

Theorem 1 (H. Yuasa and  M. Ito[2]) For F in the 
right hand side of (5), consider the orthogonal decompo- 
sition 

F = F + E ,  (10) 
where P = ( I -  L 'L )F  = [ f 1 , . - - , f r n l T  E k e r L  and E = 
L'LF = [ f ; , - - - , f r n ] T  E ( k e r L ) I .  I f  each element of E is  
described as a function of x i ,  i.e., 

(11) j .  - I.( .) 
I -  . I , ,  

then F in (1  0) satisfies (9) and the dynamics of P can be 
described as a gradient system like (8). Here, x i  is  the i - t h  
element of vector x = - L~ P = - L~ LQ. Moreover, 

m . .  

can be a potential function in (8). 

Let us show that the dynamics of q; is described using only 
the variables in N ( q ; ) .  From the definition of X ,  

n m  

k = l  k l  

where L;j denote the element of the matrix L in the i-th 
row and 3-th column. Now consider the structure of matrix 
L. Each row of L contains only two non-zero elements cor- 
responding to the coupling subsystems. It follows that, for 
any given k, L k j  and L k (  is nonzero if and only if subsys- 
tem has coupling with subsystem j. Thus, according to 
(l), x i  is described only with the state variables in N ( q i ) .  

Design of subsystem dynamics 

In order to describe the dynamics of P as a gradient system, 
we define subsystem dynamics as 

where [ f i , - - . , f rnIT  = F E k e r L  and [ f l , - - - , f r n I T  = E E 
( k e r L ) I .  The dynamics of P are decided only by j ; ( x ; )  
because LE = 0. So, in this section, we discuss the condi- 
tions for the class of function & ( x i )  so that P converges to 
its desired value Pd = [ P d l ,  + - .  ,pdn]. 

It can be easily shown that, the dynamic: of P 
reaches its stationary state P ,  if and only if F ( x )  = 
[ ~ I ( S ? I ) , - * * , ~ ~ ( X ~ ) ] ~  7 [O,-:. ,0lT.  Here - denotes a sta- 
tionary state of dynamc vanables. Accordingly, we design 
P(z) so that P(x) = E ( - L T p )  = 0 when the desired pat- 
tern emerges, i.e., P = Pd. Firstly, we discuss the relation 
between P and b. 

Lemma 3 Suppose Pd is consistent. m e n  x goes to  the 
desired value x d ,  P also converges to  Pd. 

Proof 1 B y  the definition, x = - L T P ,  and x d  = 
-LTPd. Subtracting them, we obtain 

x - x d = - L T ( P - P d ) .  (15) 

w e  should show that, if d - xd = 0, i.e., L T ( P  - Pd) = 
0 ,  then P - p d  = 0 .  From the characteristics of  pseudo- 
inverse, 

L L ~  = ( L L ~ ) ~  = ( L ~ ) ~ ( L ~ )  = ( L ~ ) ~ ( L ~ ) .  (16) 
Since Pd satisfies ( I ) ,  we have 

P - P d  = P - L L t P d = P - ( L T ) ' ( L T ) p d  
= P - ( L ~ ) ' ( L ~ ) P  = P - LL'P = [ I  - L L ' I P  
= [I - LL'ILQ = 0 (17) 

The above lemma mentions that we can design the dynam- 
ics of P in the space of X .  Next, we consider the conver- 
gence of X .  

Lemma 4 Assume that the subsystems' dynamics are 
given by (14) .  If $(xi)  satisfies the following two condi- 
tions: 
( i )  f;(zi) = 0 ut x i  = X d i ,  

(i i)  I > 0. 
then x = xd becomes one of the stationary states, More- 
over, i f  
( i i i)  j i ( X i )  * ( X i  - X d i )  > 0, 
x = xd becomes the unique stationary state. 

=;=a?& 

Proof 2 m e n  subsystem dynamics ute given by ( l d ) ,  the 
dynamics of P becomes a gradient system, the potential 
function of which is  given by (12). Thus,  we should show 
that P = Pd, i.e., x = xd corresponds t o  a local mini- 
mum point of potential function V in (12) .  The necessary 
and sufficient conditions for this are that E = 0 and all 
the eigen values of Hessian matrix Hv of V are positive at 
x = x d .  Executing some calculations, we can obtain 

aV 
8 P  
- = - L B ( X ) ,  

Hv = L D j L T ,  (19) 

where Df = d i a g [ w , . . . , w ]  , I t  follows f rom 
these equations that, i f  both conditioru ( i )  and ( i i )  hold, 
X = xd is  a local minimum point of potential function. 
Moreover, i f  condition (i i i)  are satisfied, there are n o  points 
that satisfies ( i )  and (;;) ezcept x = xd. Thus,  x = xd is 
a global m in imum point of potential function. 
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(a) Before an environment variation. 

Figure 1: A circularly-coupled oscillator system and 
subsystems' breakdown. 

No te  1 Using a monotonous increasing odd function f:, 
one of f; 's satisfying conditions (i)-(iii) is giuen by, 

& = f: ( X i  - (20) 

We can summarize the above lemmas as follows. 

Theorem 2 Assume that Pd satisfies ( 4 )  and a function 
f ; ( i  = 1, . , m) satisfies three condition ( i )  - (iii) in lemma 
4 .  Then, for the system whose subsystem dynamics are 
constructed as (id), P = LQ converges to P d .  

A n  example: Relative phase control i n  coupled os- 
cillator sys tem 

For an example of distributed control system, we take here 
relative phase control in a circularly-coupled oscillator sys- 
tem. H. Yuasa and M. Ito also applied their theory to a 
coupled oscillator system, and modeled a central pattern 
generator (CPG) in animal locomotion [3]. This problem 
is very compatible to the framework considering in this pa- 
per: subsystems correspond to oscillators, and difference in 
phases between coupled oscillators is described as a linear 
relation. Then, matrix L is expressed as incidence matrix 
of the graph, where vertices and edges respectively corre- 
spond to oscillators and their couplings. 

For example, consider the coupled 4-oscillator system, as 
shown at the left side figure in Fig. 1 . The goal here is to 
control the relative phase between two coupled oscillator i 
and i + 1: let pi = qi - qi+1 (i = 0,1 ,2 ,3)  converge to their 
desired value pd;(i = 0,1 ,2 ,3) .  Assume q 4  = q o .  Then, 

r i  -1 o 0 1  

where, P = [ p o , p r , p r , ~ t ] ~  and Q = [qorq~,q2,q~IT. The 
kernel space of matrix L is [ l ,  1,1,  1IT and from the relation 
X = -LT LQ, X = [ZO, 21, a, a] becomes, 

ti = pi-1 - p i  = qi-1 - 2qi + qi+1. 

Here, p-1 = p 3 ,  p4 = PO and 9-1 = q 3 .  Accordingly, we set 
the oscillator dynamics as 

(22) 

qi = W + f: (zi + pdi  - pdi-1) (i = 0 , 1 , 2 , 3 )  I (23) 

where Pd-1 = p a .  On account of the periodicity of oscua- 
tors, we select, for f:, a periodic function, 

f: (z) = Ti sin 2 (24) 4 

___t_pei 
pd 

(b) Without adaptation for environmental variation. 

best evaluation 

. . . ;* 
- - -  
desired pattern 

b 
+ P d = P  

(c) With adaptation for environmental variation. 

Figure 2: Our concept on adaptation. The  left fig- 
ure denotes an evaluation of formed-pattern, while the 
right figure expresses the sketch of subsystem interac- 
tions between coupled ones. 

instead of a monotonous increasing function. Finally, we 
obtain 

1 
qi = w + Ti sin ;(pi-1 - 2qi + qi+1 +pdi  -pdi-l). (25) 

Here, T; determines the magnitude of the effect from cou- 
pled oscillators. The dynamics of pattern P becomes 

. 1  si = Ti Sln i(pi-1 -Pi -Pdi-l +Pdi) 

1 
4 

-Ti+lsin-(pi   pi+^ -pdi +pdi+l),(26) 

Here,. pd4 = PdO and ~4 = TO. These dynamics certainly 
descnbed as a gradient system of the following potential 
function V 

3 
1 

V = - c 4 T i + 1  C O S ; i ( p i  -p i t1  - p d i  +Pdi+l). (27) 
i = O  

3. ADAPTIVE CHANGES OF PATTERNS 

Control a n d  Adapta t ion  

Theorem 2 gives conditions ensuring that P converges to 
Pd as long as the desired pattern Pd is consistent. How- 
ever, when the environments vary, the consistency of p d  is 
sometimes broken. Let us consider a case of a circularly- 
coupled oscillator system in the previous section. It is often 
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(a) relative phase pj. (b) Interactions 1 ; j .  (c) Effect from coupled subsystems f;. 

Figure 3: Relation and interaction between adjacent subsystems. 

required, in a coupled oscillator system, that each of them 
should work periodically with the same constant relative 
phases’. Note that, in this requirement, the desired rela- 
tive phases are influenced from the total number of subsys- 
tems: if one of subsystems breaks down as shown in Fig. 
1, the desired phasic relation will change. At that time, the 
desired pattern Pd before breakdown lose consistence. 

When Pd is inconsistent, there is no Q that satisfies P = 
LQ = Pd. Thus, Pd should be adjusted so that it becomes 
suitable to the varied environment and there exists such Q,  
i.e., satisfies (4) again. We call such an adjusting function, 
“adaptability”. In this section, we treat this topic within 
the framework of a gradient system. 

In order to make a system evolve towards a more suitable 
one by adaptation, an evaluation for the current system is 
necessary. From the view point of engineering, an evalua- 
tion should be good if P is close to Pd. Therefore, we define 
the following evaluation function, 

i= 1 

When the desired value Pd is realized, an evaluation be- 
comes best, as shown at the left figure in Fig. 2 (a). Then, 
as shown latter, local interactions among subsystems are 
zero. 

Now, suppose that Pd becomes not to satisfy (4) by the 
changes in environment such as subsystems’ breakdown. 
Then, the formed pattern has shifted from the desired one, 
as depicted at  the left figure in Fig. 2 (b). Then, inter- 
actions between coupled subsystems always work. Such a 
situation is, however, not so good, because the pattern is 
formed as the balance of interactions, as the right figure 
in Fig. 2 (b). Actually, when Pd was consistent and the 
desire pattern emerged, these interaction had disappeared 
as shown in Fig. 2 (a). 

Accordingly, we try to decrease subsystem interactions and 
cancel their balance with keeping the emerging pattern, 
as shown in the left figure in Fig. 2 (c). This scheme is 
equivalent to adjusting Pd so as to satisfy (4). At this time, 
the evaluation function (28) also changes so that a new 
formed pattern obtains the highest evaluation, as depicted 
in the left figure in Fig. 2 (c). 

To achieve both the convergence to and adjustment of Pd, 
it is important to split the dynamics by the time scale: 

‘Such an example is found in a multi-cylinder engine, where 
each cylinder (or its valve) correspond to subsystem. In one cy- 
cle, each valve is controlled by a cam-shaft at the same constant 
relative phases. 

tAt this example, the reliability of subsystems is regarded as 
environmental condition. 

the system dynamics and the adaptation dynamics. Since 
adaptation usually works after evaluating the formed pat- 
tern, the adaptation dynamics should be enough slower 
than the system dynamics. The difference in time scale 
is essential in an adaptive systems. 

Subsystem Interactions 

Before discussing the adaptation dynamics, we should clar- 
ify how subsystem interactions are represented in subsys- 
tem dynamics. From Theorem 2 and Note 1, we set sub- 
system dynamics as 

(29) 

The effect from the coupled subsystems are expressed in 
the term f: . Thus, we examine the description of I; - t d ;  

to define the interactions. According to (15), 

Here, -Lk; .# 0 if and only if the coupling numbered by 
le couples subsystem S; with another. At this time, the 
influence the subsystem S; gets is in proportion to the dif- 
ference between a functional relation and its desired value 
defined a t  the coupling k. Thus we define the subsystem 
interaction 1;) as 

which denotes the influence to the subsystem i through the 
le-th coupling, as shown in Fig. 3 (b). By this definition, 
the second term of (29) becomes 

n 

k= 1 

This equation indicates that, in order to actually give effect 
to the dynamics of subsystem S;, 1;) have to be locally 
summed up and then mapped by f: ’. 
Using (31), the evaluation function (28) can be written as 

(33) 

:Such a mapping can be found in the sigmoid function in 
neuron model. It is the same in that  it maps the weighted sum 
of the direct action from the connected neurons. 
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(a) Oscillator phase 8;. 

0.8 

0.4 

0 
10 20 30 40 5 )  

-0.4- 

"'I 

pdO 
pd I 
pd2 
pd3 

---- 
- - - - - -  
----- 

(s) 

O > (s) 

-0.4 

-4 I 
-5 1 I 

(d) Desired relative phases Pdi. (e) Difference between P and pd. 

Figure 4: Simulation results when the number of subsystems decreases in the coupled oscillator system. 

This means that the pattern can be also evaluated by the 
magnitude of the interactions. 

Adaptation dynamics 

This section presents'the adjusting method of pd. Note 
that, even if Pd have changed, the dynamics of P is still 
described by a gradient dynamics. 

fying (4) by _environmental variations, then P - pd # 0, 
nonetheless X - Xd = 0. This means, from (15), that 
P-pd  E kerLT. Therefore, F + ( x - x d )  = 0, but e) # 0, 
implying that the emerging pattern is maintained on the 
balance of interactions among subsystems. Our goal is to 
decrease interaction fr) to prevent such a situation. This 
is achieved by adjusting pd so that the emerging pattern 
coincides with the desired one. 

For consistent Pd, X - Xd = o if and only if P - Pd = 0. 
Then, not only p[T - xd) = 0 but aho j i i )  = 0 are sat- 

Lemma 5 Define the adaptation dynamics o f p d  as 

j d i  = Tp($Ji - P d i ) ,  (34) isfied. However, if Pd becomes inconsistent and unsatis- 
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where 0 < 7- << 1. Then ,  these dynamics do not increase 
l f ? l *  

Proof 3 W h e n  rP i s  small enough, the pattern dynamics of 
P is regarded as much  faster than the adaptation dynamics 
(34). Accordingly, at the t ime  scale of the dynamics of Pd, 
the dynamics of P have already converged to the stationary 
state P .  Then,  I ;  i s  also stationary, i.e., xi = 5i. Here, 
let y; = E ;  - I d ;  = - Cy==, Lj;(jjj - pdj),  then, it foUows 
f rom Gi = -Tp(Ei  - Z d i )  that 

From Note 1, f t  i s  a monotonous increasing function, i.e., 
af+(+i-zd;) ’ Therefore we obtain slf21 < 0 f o r  

5% # X d i .  The  equality $1f:l = 0 holds only at E i  = X d i .  

> 0 . 

Note  2 Applying a n  adiabatic approximation of synerget- 
ics,[4], the dynamics of P can be regarded as stationary 
in the dynamical scale of Pd. I n  this dynamical scale, not 
only tf = 0, but also X = xd from lemma 4 ,  are always 
satisfied. These equations together with (15) indicate that 
Pd evohes so that P - Pd stays within the kernel space of 
matrix L. 

We verify the following lemma on the convergency of Pd. 

Lemma 6 Suppose that rP i s  small enough for  satisfying 
a n  adiabatic approximation. Let Pd eyolve in t ime  accord- 
ing t o  (34). Then ,  Pd coincides with P.  

Proof 4 From a n  adiabatic approximation, we can regard 
p; as constant value j j ;  . Select (28) for  Lyapunov function. 
T h e n  E in (28) satisfies E 2 0 ,  and 

n 

i= 1 

The equality holds a t  pdi = j j ; .  Therefore, pdi = jji i s  stable 
and thus Pd converges t o  P .  

Note  3 The  Pd obtained f rom the adaptation dynamics’ 
(34)  is consistent, i.e., it satisfies (4). 

We can summarize the above lemmas as follows: 

Theorem 3 For the system given by (29), define the adap- 
tation dynamics as (34). If the time scale of (34) is 
enoughly smaller than that of (29), then P and Pd are equal 
at the stationary state. A t  this t ime, Pd satisfies (4).  

Proof 5 The former  of this lemma has been proved by the 
above lemmas. On the other hand, the latter is also trivial 
f rom the proof of l emma 3. 

4. SIMULATION 
We executed the simulation for a circularly-coupled 4- 
oscillator system shown in Fig. 1. We set the desired 
oscillation pattern as a pattern such that each oscillators 
oscillate at the same constant relative phases in no relation 
to the total number of oscillators. Since the desired oscil- 
lation pattern depends on the total number, the oscillator 
2 was removed at 10 seconds from the start of simulation, 
which correspond to the environmental changes. All the 
subsystems never know when and which subsystems are 
removed. 

Fig. 4 (a) shows the time evolution of the phase for each 
oscillators. Although all the phases are the same a t  the ini- 
tial state, oscillators create the desired oscillation pattern 
with the same relative phases in some seconds. However, 
this oscillation pattern is perturbed at 10 second owing to 
the change in the total number of oscillators. Nevertheless, 
the new oscillation pattern emerges after a while according 
to oscillator interactions. The new oscillation pattern is 
maintained until the end of the simulation. 

Fig. 4 (b) shows the evolution of the relative phases p i ,  
while Fig. 4 (c) depicts the magnitude of f z .  When 
f: = 0, the system stays at a stationary state and relative 
phases keep constant. They converged to - f ~  (or ; T )  in 4- 
oscillator system, while -$T (or f ~ )  in 3-oscillator system. 
These results indicate that the suitable oscillation pattern 
is obtained according to the total number of oscillators. 

Fig. 4 (d) depicts the changes of pd; and Fig. 4 (e) shows 
pi-pdi that is proportional to the oscillator interaction $). 
Just after the change of environment, oscillator interactions 
are not eliminated in spite of f? = 0. This indicates that 
the oscillation pattern is maintained by the balance among 
oscillator interactions. By an adjustment of pd;, however, 
the differences between p;  and pd; vanish and interactions 
disappear. Finally, the proper desired relative phases are 
obtained in Pdi. 

5. CONCLUSION 
We considered an adaptation in the distributed system on 
the basis of control theory following a gradient dynamics 
proposed by H. Yuasa and M. Ito. We define the adapta- 
tion dynamics, whereby the desired pattern is adjusted with 
slow dynamics so that interactions among subsystems de- 
crease. We executed the computer simulation for coupled- 
oscillator system, which shows that a suitable oscillation 
pattern are achieved as well as desired relative phases are 
properly acquired through the interactions among subsys- 
tems. As future works, we consider applications in design- 
ing flexible artificial systems. 
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