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ABSTRACT 

This paper studies the adaptability of the animals' rhyth- 
mic movements to the changes in their environments. 
Rhythmic movements are usually modeled by central pat- 
tern generator (CPG) using coupled oscillators. In our 
research, by analyzing the perturbed locomotion of the 
decerebrate cat, we propose a mathematical model for an 
adaptation mechanism. In this model. we take into ac- 
count the environmental changes and give the adaptation 
rules so as to  minimize the interaction between each os- 
cillat ors We also propose a general framework describing 
adaptive behaviors in rhythmic motion. 

1. INTRODUCTION 

Many movements of animals, such as locomotion, breath- 
ing and chewing, can be executed even though there is 
no mot,or command from higher nervous system. These 
movements are automatic and usually forms periodic pat- 
terns. Physiological experiments demonstrate that rhyth- 
mic movements are produced in the spinal neuronal net- 
work called CPG (Central Pattern Generator), which in- 
clude neural oscillat,ors [I], and many researchers have 
formulated the CPG as coupled oscillators. 

Recent biological studies further discovered that,, during 
performing the rhythmic movement, an animal has an 
ability to adapt to its environmental changes. For exam- 
ple, Yanagihara et, al. studied the motor learning ability 
of a decerebrate cat walking on a specially designed tread- 
mill [ 2 ] .  The treadmill consists of three moving belt,s. As 
shown in Fig. 1, in the experiment, they put, the left fore- 
limb (LF) and the left hindlimb ( L H )  of the cat. on two 
independent belts, and put, the right two limbs (forelimb 
(RF) and right hindlimb (RH)) together on the remain- 
ing belt. They first. drove the three treadmill belts with 
the same low speed (36cm/s) and made the decerebrate 
cat to walk with a normal gait pat,t.ern called by "walk" 
(Fig. 2 (a)). After that ,  they increased the speed of the 
LF belt to 1.7 t,imes faster (6lcm/s) than that, of the oth- 
ers (36cm/s). In this case, whenever a cat. places its left. 
forelimb onto the belt, the limb suffers from a mechanical 
pert,urbation. They then found that the cat's locomotion 
is initially not stable. that is, the cycle period of two fore- 
limbs often differ in each step cycle. However. after a few 
training, t.he cat, gradually adapts t,o a new environment. 
and begins t,o walk with a new steady gait pat,t.ern. The 
experimental results of gait diagrams are shown in Fig. 
2. In this figure, there are two bisupport phases in one 

step cycle, marked by B1 and Bz. In B1 bisupport phase, 
the left forelimb first support and then comes the right 
forelimb. Conversely, in BZ bisupport phase, the right 
forelimb first support and then the left forelimb. It is 
found that, during the normal locomotion, the two bisup- 
port phases have equal duration (Fig. 2 (a)). However, 
perturbation makes BI shorter than Bz (Fig. 2 (b)) .  This 
difference tends to  decrease when the cat adapts to a new 
environmental conditions (Fig. 2 (c)). It indicates that 
the interlimb coordination, which has  been disturbed by 
perturbation, is regained after many steps on treadmill. 
This interlimb coordination is important to  execute the 
smooth and stable locomotion. Furthermore, it was found 
that ,  a t  the nest trial after rest, the cat can walk under 
the perturbed environment with the gait Fig. 2 (c) from 
just the beginning of locomotion, which means that the 
decerebrate cat can memorize the gait pattern that have 
acquired in adaptation. From the biological point of view. 
Yanagihara e t  al. suggest that synaptic plasticity in cere- 
bellum is essential for such adaptation [3]. 

The object of this paper is to propose a mathematical 
framework to  model the adaptive mechanism of rhyth- 
mic movement to environmental changes. In this paper, 
we first model gait pattern generation as the coordina- 
tion among each oscillator. We describe the dynamics of 
relative phases between oscillators as a gradient system. 
The minimum of the potential function corresponds to 
the stable gait pattern. According to Yuasa and Ito [4], 
we can uniquely design the interaction for each oscillator. 
Then, by taking into account the perturbation from en- 
vironment, we propose an adaptation rule to adjust the 
oscillator dynamics as well as the potential function so as 
to decrease the interaction between the oscillators. 

2. GAIT PATTERN GENERATION 

Model of rhythmic movement 
As shown in Fig. 3. we model the rhythmic movement of 
locomotion as the coupled oscillators. Yuasa and Ito [4] 
showed that. if we design the dynamics of relative phase 
as a gradient system, then we can uniquely design the in- 
teraction between each oscillators. A gradient system is 
a system whose dynamic property can be described using 
a potential function. The minimum of the potential func- 
tion corresponds to  the stable state of the gradient system. 
Followed by Yuasa and Ito [4], we use four oscillators to  
describe the movement of each limb of quadrupeds. We 
design the connections among each oscillator as shown in 
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Figure 1: Perturbed locomotion with a decerebrate cat. 
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Figure 2: Gait diagrams of cat locomotion. They change 
by adaptation as well as perturbation. 

Fig. 3. Note that, this kind of connections is used only for 
mathematical convenience and may not always coincide 
with the actual CPG connections in animals. However, it  
does not influence the essence of the problem. 

In Fig. 4, the oscillator phase &(i = 0 , 1 , 2 , 3 )  represents 
a limb state in one cycle of movement. It implies that os- 
cillator phase coincides with the phase of limb movement. 
Each limb takes two states: swing phase and stance phase. 
We divide the phase space of oscillators [0,2x) into two 
parts and assign them to swing phase and stance phase, 
respectively. As shown in Fig. 4, the range of 8, where 
cos8, 2 y is stance phase and the range where cos@, < y 
is swing phase. Here, y is determined from duty factor p, 
which denotes the ratio of stance phase in one step cycle. 
The relation between y and /3 is described by 

7 = cos x p .  (1) 

Figure 3: Connection of oscillators in our CPG model 
(LF: left forelimb, RF: right forelimb, LH: left hindlimb, 
RH: rieht hindlimb). c 

Figure 4: Stance phase and swing phase. In this case, 
only the LF (60) is in swing phase and the others (LEI, 
RF, RH) are in stance phase. 

Dynamics in stance phase: In the stance phase, 
limbs always contact with the treadmill and can not move 
freely. Thus, we describe the dynamics of the supporting 
limbs as follows: 

e; = pi (i = 0, i , 2 , 3 )  (2) 

where p ; ( i  = 0 , 1 , 2 , 3 )  is a variable representing the speed 
of treadmill belt. Equation (2) means that the limb move- 
ment is forced by treadmill. 

Dynamics in swing phase: In this phase, limbs 
can move freely. Thus, i t  is possible to adjust the phase of 
limb movement using interaction among each oscillators. 

6 .  i - - w t + f i  - . ( i = O , 1 , 2 , 3 )  (3) 

where w,(i = 0 ,1 ,2 ,3 )  denotes the angular velocity in 
swing phase and f , ( i  = 0 , 1 , 2 , 3 )  denotes the interaction 
term. According to  Yuasa and Ito [4], f,(i = 0 , 1 , 2 , 3 )  can 
be given as follows: 

fo = re (@,  + 6'3 - 280 - DO - 01) 

fl = re(& + 82 - 261 + DO - D2) 
f2 = re(@,  - 82 + D2) 
f 3  = re(eo - e3 + 0,) 

(4) 

( 5 )  

(6) 

(7) 
where re is a constant parameter which controls the mag- 
nitude of oscillator interaction, and D,( j  = 0 , 1 , 2 )  is a 
desired relative phase. It should be noted that, if the 
relative phase equals to the desired value, then the inter- 
actions will be zero, i.e., never work. 

The desired relative phase D,(j = 0 , 1 , 2 )  is a parame- 
ter which describes a particular locomotion pattern, and 
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Figure 6: Oscillator interaction during normal locomo- 
tion. No interaction works. 

wi( i  = 0 , 1 , 2 , 3 )  is another parameter to affect the phase 
relation among each limbs. 

Treadmill dynamics: For a decerebrate cat 
walking on the treadmill, the rotation velocity of the 
treadmill corresponds to its environment. We describe 
it as 

pi = pi ( i  = O , l ,  2 , 3 ) ,  (8) 
where pi ( i  = 0 , 1 , 2 , 3 )  is a parameter describing environ- 
ment. 

S imula t ion  w i t h o u t  adapta t ion  

Normal locomotion: In the case when all the 
treadmill belts are driven with the same speed, 

L H + F j  LF 

RH 

Figure 7 :  Perturbed locomotion without adaptation. 
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Figure 8: Oscillator interaction in perturbed locomotion. 
The interaction works so that locomotion should converge 
to memorized pattern. 

(eq. ( 1 1 ) )  corresponds to  the memorized locomotion pat- 
tern (Fig. 2 (a)) in the normal environment. 

Perturbed locomotion: When the treadmill 
belt of the left forelimb (LF) is driven faster (1.7 times) 
than the others, that is, 

po = 1.7W,p1 = pz = p3 = W 

and, if we still use above equation (10)  and ( l l ) ,  we then 
get the simulation result as shown in Fig. 7 and Fig. 8. In 
Fig. 8, we found that the interactions never goes to zero, 
which means that there are always interactions between 
each oscillators. 

(13)  

3. ENVIRONMENTAL ADAPTATION po = p1= p2 = p3 = w ' (9) 

the decerebrate cat can walk with the normal locomotion 
pattern shown in Fig. 2 (a). 

In our model, if we choose 

then we can realize the same locomotion pattern as Fig. 
2(a). We select the duty factor from Fig. 2(a) (/3 % 2 / 3 ) .  
Thus using eq. ( I ) ,  we get y = -0.5. Fig. 5 shows the 
simulation result of the gait diagram when the treadmills 
are driven with the same speed. 

In our model, oscillator interaction is regarded as the force 
that  realizes a desired motion pattern. If a desired pattern 
has already been realized, then interaction equals zero. 
This is shown in Fig. 6 which plots Fi(l= 0,1,2,3), 

Pi = f id t  (i = O , l ,  2 , 3 ) ,  (12) J, 
that is, the integration of interaction f, during one step 
cycle. The potential function with the above minimum 
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Adaptation mechanism 
In the simulation of previous section (Fig. 7 ) ,  although 
we can get stable pattern even though the environment 
changes, we can not regard this gait pattern as a result 
of adaptation. In the biological experiments, it  was sug- 
gested that, firstly, before the cat can walk stably under 
the perturbed environment, it  is necessary to  train for 
a lot of steps; and secondly, after the learning, the cat 
can memorize the new gait pattern that adapts to the 
new perturbed environment. However, the mathematical 
model described in the above section was not sufficient to 
include these two important aspects. 

In fact, as shown in Fig. 9, the minimum point of the 
potential function corresponds to the point attractor in 
the relative phase space, and gradient force corresponds 
to  the oscillator interactions. Therefore, the interactions 
work in such a way that the relative phase converges to  
the attractor, i.e., a desired state. This ensures the stabil- 
ity of the desired locomotion pattern. The gradient force, 
i.e., oscillator interaction brings the locomotion fiom per- 
turbed one to the memorized pattern. When there is a 
periodic perturbation, the state of relative phase will be 
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Figure 9: Mechanism on adaptation in perturbed locomotion. 

shift from the attractor, i.e., minimum point of poten- 
tial. In this case, the gradient force acts to lead the state 
back to the attractor. However, since perturbation is pe- 
riodic, it  may, if large, operate before converging to mini- 
mum point of potential. As a result, a new state emerges, 
where perturbation and gradient force are balanced (see 
Fig. 9(b)). This corresponds to the gait pattern given in 
Fig. 7. If the new pattern is generated by the balance be- 
tween the oscillator interaction and periodic perturbation, 
then the oscillator interaction will always be necessary. 
This kind of pattern generation is not effective even from 
the point of view of energy loss. Therefore, we suggest 
that in the perturbed environment, the potential function 
itself should be adjusted so that, when performing adap- 
tive movement, the interaction among each oscillator goes 
toward zero. As shown in Fig. 9(c), it equals to change 
the minimum point of the potential function. 

In summary, our concept about adaptive mechanism is to  
adjust the parameter of oscillator dynamics, especially PO- 
tential function, which corresponds to memorized motion 
pattern. The adjusted parameters in oscillator dynam- 
ics determines a emerging motion pattern, whereas the 
adjustment process corresponds to  the learning. 

Dynamics  of a d a p t a t i o n  mechanism: We 
now study on how to adjust the parameters of locomo- 
tion pattern: the angular velocity in swing phase w;( i  = 
0,1,2,3) and the desired relative phase D,(j = 0,1,2). 
A criterion for parameter adjustment is to minimize the 
oscillator interaction. The adaptation dynamics should 
be slower than that of locomotion, because it is necessary 
to firstly know the evaluation of current pattern before 
adjusting the parameters. The resultant adjustment rule 
are given as foliows: 

w$””) - (n) + r, f i d t  (i = 0,1,2,3) ,  (14) - w, J ,  
DP”) = + TD (15) 

JT 

DP”) = DP’ + TD (fi - f i ) d t ,  (17) s, 
where n denotes a iteration number of step cycle, T is a 
duration of one step cycle, f,(Z = 0,1,2,3) denotes the 
force given by eq. (4)-(7) and, T, and TD are parame- 
ters that influence convergency of wt and D, , respectively. 

These adaptation dynamics is applied in every step cycle. 

Equation (14) controls natural frequency of each oscilla- 
tor U,. We can show that F,, the integration of interac- 
tion f, for one cycle (eq. (12)), decreases according to 
eq. (14) (see Appendix). On the other hand, eq. (15) 
to (17) balance the magnitude of oscillator interactions. 
Consequently, these equations reduce the following Vo, 

that is, an integration of squared summation of interaction 
f,. As a result, the minimization of F, and VD reduce the 
interaction f;. It should be noted that if the change of w; 
is slow enough, then the dynamics of the relative phase 
wiU still keep to be the gradient system. 

Simulation: We executed the new simulation by 
applying the above adaptive mechanism. In the simula- 
tion, we set time constants as r e  = 2.0, T, = 0.25 and 
SD = 0.02. 

Fig. 10 shows the gait diagram from simulation, which is 
much similar to the experimental result of the decerebrate 
cat in Fig. 2(c). Fig. 11 and Fig. 12 show the time evolu- 
tion of Fi (eq. (12)) and VD (eq. (18)), respectively. Fig. 
13 and Fig. 14 show the adjustment of angular velocity 
wt and desired relative phase D,. These figures indicate 
that parameters of locomotion pattern are changed, which 
decreased the oscillator interactions. 

4. DISCUSSIONS 

General features 
We have described our concept of adaptive mechanism 
in rhythmic movements. There are two types of parame- 
ters that determine rhythmic motion pattern: parameters 
representing subsystem’s natural characteristics and pa- 
rameters describing the relation among each subsystems. 
In the locomotion example, the former is w;(i  = 0,1,2,3)  
and the latter is D,(j = 1,2,3). If these parameters are 
adjusted, the attractor of motion dynamics will change, 
which, in our concept, corresponds to adaptation. 

In order to generalize our concept of adaptation, we sum- 
marize several general features in the adaptation of rhyth- 
mic movement. 

Memor iza t ion  of r h y t h m i c  mot ion  patterns: 
The fact that the same rhythms can be generated repro- 

278 



RF 

RH 

Figure 10: Adapted locomotion to perturbation. 
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Figure 11: Oscillator interaction in adapted locomotion. 
The interaction decrease with adaptation. 
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Figure 12: Evaluation function VD, which decrease with 
adaptation. 

ducibly against the same environment indicates that pat- 
terns are memorized in some forms. In our model, natural 
frequency of oscillator and desired relative phase among 
oscillators me stored in memory. 

Adjustment of r h y t h m i c  motion pattern in 
memory:  To adapt to any environments, we need not to 
memorize all the motion patterns, and it is also impossible 
against an unexperienced environment. When working in 
new environment, the corresponding new pattern should 
be acquired by adjusting the memorized pattern. 

Environmental changes: CPG basically pro- 
duces rhythms in a feedforward manner, since it do not 
use sensory feedback or command from upper nerve sys- 
tem [l]. If the environment is always changing randomly, 
such a feedforward rhythm generation will be impossible 
because environment must be identified by using sensory 
feedback. Therefore, in order to adjust the CPG so that  
it generate the adequate rhythmic pattern with respect to 
the specifical environment, the environment itself should 
not fluctuate faster than adaptation. 

Time scale of adapta t ion :  Adaptation requires 
the evaluation of present motion. Before pattern adjust- 
ment, it  is necessary to know how suitable the present 
pattern is. Therefore, the dynamics of adaptation must 
be slow enough compared to that of the rhythmic motion 
dynamics. 

Convergency of a d a p t a t i o n  : If adaptation 

5sPJ t- \ 
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Figure 13: Change of wi(i  = 0, 1,2,3)  by adaptation. 

- step 
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Figure 14: Change of Dj(j = O , l ,  2) by adaptation. 

progresses slowly, rhythmic motion has to  continue for 
a long time. The repetition of rhythmic motion is impor- 
tant for convergence of adaptation. 

A framework for a d a p t a t i o n  in r h y t h m i c  motion 
Based on the above discussions, we propose a general 
framework of adaptation mechanism in rhythmic move- 
ments, as shown in Fig.15. Here, 2 denotes the state of 
rhythmic movement, y denotes environment, parameter 
X affects rhythmic pattern and parameter p specifies en- 
vironment. In the above locomotion case, for example, 
the parameters are 2 = [eo, &,&, 631, y = [PO,  PI, PZ, ~ 3 1 ,  

= [WO,WI,W~,WS,DO,DI,DZ], P = [Po,pi,P2,cl3], re- 
spectively. 

Envi ronment  Dynamics: The dynamics of envi- 
ronment varies according to  parameter p. The parameter 
p must be constant for convergence of adaptation. In the 
locomotion case, environmental dynamics are described 

R h y t h m i c  Motion Dynamics: Rhythmic mo- 
tion pattern is a attractor within the space of 2. It is 
determined by parameter X of rhythmic motion pattern. 
In addition, it is also affected by the environment y. Ac- 
cordingly, dynamics of z contains not only 2 but also y 
and A. In the locomotion case, rhythmic motion dynamics 
are described by eqs. (2)-(7). 

A d a p t a t i o n  Dynamics: The rhythmic motion 
is directly influenced from the environment. In order to 
adapt to the environment so as to minimize some evalu- 
ation function E ( z )  (VD and F, in the locomotion case), 
we should adjust the parameter X of the motion pattern. 
Further, the dynamics of X must be slower enough than 
that of 2, so that it is possible to adjust X according to 
the evaluation of motion pattern. In the locomotion case, 
adaptation dynamics are described by eqs. (14)-(17). 

In this framework, adaptation can be defined as to  find 
suitable parameter X of rhythmic pattern against given 
environment p. This process is executed through rhyth- 
mic movement. 

by eq. (8) .  
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Figure 15: Our framework for adaptation in rhythmic 
movements. 

5. CONCLUSION 

This paper studied the adaptation mechanism of rhyth- 
mic movement to the environmental changes. By ana- 
lyzing the perturbed locomotion, this paper proposed a 
mathematical framework of adaptive behavior, where the 
potential function of the relative phase dynamics is ad- 
justed. This kind of adjustment minimizes the interac- 
tion between each subsystem and allows the system to 
memorize the motion pattern with respect to  the corre- 
sponding environment. In our adaptive mechanism, it is 
necessary for the time scale of adaptation dynamics r, 
and ro to be much larger than that  of rhythmic motion 
dynamics re, (i = 0 ,1 ,2 ,3 ) .  Furthermore, this paper pro- 
posed a general framework which takes into account of 
the environmental changes. 

One of our future works wil l  take into account the real 
dynamics of limbs or body. In the present paper, we im- 
plicitly assumed that phase of limb movement is equal to  
that of oscillator. However, they are not always equal. It 
will become a problem how to deal with the difference of 
these two phases. In addition, postural balance, because 
of body dynamics, will be another problem, since i t  is cer- 
tain that the interlimb coordination is acquired through 
the postural balance. 

ACKNOWLEDGMENT 

A part of this work was supported by the science research 
fund from the Ministry of Education, Science and Culture 
of Japan under Grant (#07243105). 

REFERENCES 

[l] Grillner S (1975) Locomotion in Vertebrate:Central 
Mechanisms and Reflex Interaction, Physiological Re- 
views, 55:247-304 

[2] Yanagihara D, Udo M, Kondo I, Yoshida T (1993) A 
new learning paradigm: adaptive changes in interlimb 
coordination during perturbed locomotion in decere- 
brate cats, Neuroscience Research, 18:241-244 

280 

[3] Yanagihara D, Kondo I (1996) Nitric oxide plays a key 
role in adaptive control of locomotion in cat, Proc. 
Natl. Acad. Sci. USA, 93:13292-13297 

[4] Yuasa H and Ito M (1990) Coordination of Many Qs- 
cillators and Generation of Locomotory Patterns, Bi- 
ological Cybernetics 63: 177-184 

APPENDIX 

Adjustment of angular  velocity i n  a swing  phase 
Dynamics of oscillator in swing phase is given by 

6, = w, + ft ( z  = 0 , 1 , 2 , 3 ) .  (19) 

B , ( t )  = w, t  + F, ( 8  = 0, 1 ,2 ,3 ) ,  (20) 

(21) 

Integrating them during swing phase, we get 

where 
F‘ = l s W f l d t  ( i  = 0 , 1 , 2 , 3 ) ,  

and T,, is a duration of swing phase. If Fi > 0 (or < 0), 
then B, is accelerated (or decelerated). In order to reduce 
the interaction F,, we adjust w, in proportion to F, as 

,In+*) = win) + rWFj (i = 0,  1 ,2 ,3 )  (22) 

If F; = 0, then we do not change w;  because wi is neither 
small nor large. 

Since we assume the interaction do not work in a stance 
phase, it  enables us to rewrite eq. (21) as follows: 

F, = f i d t  (i = 0 , 1 , 2 , 3 )  J ,  


