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Abstract: This paper proposes a method for creating a 3D PCD map using the spherical camera to utilize it for the
LiDAR self-localization of the AMR. Usually, the LiDAR on the AMR is utilized for the map creation, but it requires
some process with moving the big AMR itself. This paper attempts to simplify this process by replacing the scanning
device with a small spherical camera. Finally, a map creating method is established using OpenVSLAM, and automated
driving is demonstrated based on the map obtained from this method.
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1. INTRODUCTION

Manufacturing industries such as the automobile in-
dustry and the aircraft industry are thriving in the Cen-
tral region of Japan including our prefecture, Aichi and
Gifu. In particular, the aerospace industry in Gifu Prefec-
ture is the second largest in Japan in terms of the number
of business establishments and employees and boasts a
high concentration so that it occupies the third-largest in
the shipment value of manufactured goods. Taking ad-
vantage of its regional characteristics, Gifu area has been
designated as one of the governmental projects named,
‘Human resource development and research project on
production technology aiming to form Japan’s aerospace
industry cluster’.

One of the aims of this project is the manufactur-
ing innovation of the aerospace industry towards the
cyber-physical factory, in which automatization is one
of the key technology realizing the cost-saving high-
performance with accuracy and rapidness. Among the
automatization, we are tackling the transportation achiev-
ing the unmanned delivery between or within the facto-
ries.

To reflect the characteristics of factories in the air-
craft industry, we are proceeding to develop the following
functions:

1. Supports frequent changes of factory layout.
Since the products, namely, aircrafts are large, their
position is rather fixed than flowed on the line: parts
and tools are often transported and then temporally
installed for manufacturing. This implies that the
position of the manufacturing machines has to be
modified to cope with the frequent changes in the
production site layout.

† Yusuke Isozumi is the presenter of this paper.

2. Supports a wide variety of transportation routes.
The large aircraft factory contains many buildings

treating numerous numbers of parts and assemblies.
Each part has a different start point and endpoint
for transportation, and even the same part is some-
times used in a different place, Also, the destinations
of manufactured parts are also diverse. These facts
indicate that the transport route is always changed
frequently and various transportation routes are re-
quired.

3. Supports the co-existence of both human and ve-
hicles
The transportation route in the factory has to be of-

ten set to pass the area where the human workers or
other vehicles are operating or moving. In particular,
automobiles and bicycles are passing the outside of
the building. Therefore, it is necessary to avoid not
only stationary obstacles but also moving objects.

To meet these three requirements, our research group
containing companies had designed an original AMR
(Automatic Mobile Robot) prototype machine. Then,
the most crucial and basic function was how to acquire
the environmental status of AMR and how to grasp the
current position based on it, that is, the method of self-
localization. To realize the self-localization, we decided
to install, at the prototype machine, the 3D LiDAR (Light
Detection And Ranging) which is also applied in the au-
tomatic driving technology of automobiles.

However, the self-localization using LiDAR requires
an environmental map in advance before the AMR works
there. This map is called 3D PCD map (Point Cloud Data
Map) composing of a tremendous number of 3D posi-
tional data. At the localization, the LiDAR-scanning data
is compared to this map and the best matching point is
selected as the estimate of the current position.
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This PCD map is usually created by the AMR itself to
be used because it already has an expensive LiDAR. Fur-
thermore, the data from the AMR to be used are prefer-
able for the matching; the data scanned by another AMR
produces a bit different 3D PCD map due to the effect
of the LiDAR height, which is not advantageous for the
accurate self-localization.

However, the following problems were pointed out
from the shop-floor side against this normal map-creating
method.

1. Factory layout frequent changes and the map should
be updated at the same time. That is to say, the situ-
ation of the updating map is too frequent.

2. The prototype machine will be operated remotely,
but the remote operation requires some skills and fa-
miliarization.

3. The education of the shop-floor workers is needed
to master a series of map creation processes.

Based on these problems, this paper aims at proposing
a creation method of the 3D map that does not use LiDAR
or the prototype AMR itself. Instead of 3D LiDAR on
the AMR, we are going to introduce an inexpensive com-
mercialized camera for the map creation. The envisioned
situation is that a human walks around the factory with a
camera attached to the top of his or her helmet or some-
thing similar. While walking around, the camera records
the environment as a video. This video is analyzed to
calculate the location information through the image pro-
cessing. Based on this analysis, the 3D map is generated.
In Section 2, we establish a method as a series of opera-
tions to obtain a PCD map. In Section 3, we evaluate the
accuracy of this map and its applicability to AMR self-
localization using LiDAR through experiments. Section
4 concludes this paper.

2. PCD MAP CREATION METHOD
USING A SPHERICAL CAMERA

2.1. Overview
In this research, we use a spherical camera to capture

a wide 360-degree area at once. Based on the spherical
camera images, we will create a 3D map using OpenVS-
LAM. OpenVSLAM can detect such feature points as the
places with large color changes or corners of a window
frame from the spherical camera video, and output their
position as a PCD map. However, point clouds created
from camera images are inherently different in their num-
ber and location compared to those that LiDAR produces.
Therefore, trial-and-error experiments were required to
obtain a PCD map that is applicable to the LiDAR self-
localization.

In this section, we will establish a procedure for creat-
ing a PCD map from a spherical camera by testing various
preparations, operations, situations, and parameters to be
set.

2.2. Proposed method
The following is a series of procedures we propose.

1. Camera calibration

Fig. 1 Feature point extraction on OpenVSLAM

2. OpenVSLAM parameter settings
3. Feature point extraction by OpenVSLAM
4. Map creation
5. Scale conversion

The rest of this subsection explains these processes in this
order.

2.2.1. Camera calibration
Camera calibration is a method of estimating the inter-

nal parameters of a camera from the known-size photos
and videos taken by the camera itself. It is also possible
to correct lens distortion from the estimated parameters.
Several checkerboard photos were taken and used to esti-
mate the internal parameters.

2.2.2. Setting parameters for OpenVSLAM
OpenVSLAM requires some parameters of the camera

to extract the feature points. The important parameters
are summarized as follows:

Feature.max num keypoints : Maximum number of
feature points in one video frame.

Feature.scale factor: This parameter is used to esti-
mate the 3D distance of an object from the superim-
posing photos of different scales internally created
by the OpenVSLAM.It determines the distance be-
tween photos of different scales.

Feature.num levels: It determines the number of pho-
tos of different scales.

Feature.ini fast threshold,Feature.min fast threshold
:Brightness threshold of one video frame.

These values are set in the file, camera config.yaml.
Among them, some parameters such as camera fps and

resolution are determined by the camera specification.
Other parameters were determined by trial and error.

2.2.3. Feature point extraction using OpenVSLAM
OpenVSLAM automatically extracts feature points

such as the corners of a window frame or ends of a pillar,
and computes their coordinates in 3D space.

Fig. 1 shows how the feature points are extracted on
OpenVSLAM. Many small yellow rectangles denote the
extracted feature points.

2.2.4. Map creation
The feature points extracted by OpenVSLAM were

converted to PCD files. For the conversion, a python

405



Table 1 The specification of the spherical camera utilized in this paper.

Fig. 2 Point cloud data map

code is provided on the Internet[1]. The PCD file can
be checked by the PCD editing software ‘CloudCom-
pare’[2]. Fig. 2 shows a visualization result of the PCD
file using CloudCompare.

2.2.5. Scale conversion
The scale of the map that OpenVSLAM produced is

often not the same as that of the real space. In such a
case, the scale should be manually adjusted using Cloud-
Compare.

3. EXPERIMENTS

3.1. Purposes and methods
Using the map followed by the procedure in section

2, we aim at realizing the self-localization and the auto-
matic driving by the AMR. Then, an automatic driving
software, “Autoware (ver. 1.1.12.0)” was utilized. Auto-
ware uses a technique called scan matching to achieve the
self-localization from the created PCD map and LiDAR-
scanning data[3]. We conducted experiments in the fol-
lowing three steps.

1. Check first if Autoware can read the map created by
the procedure in section 2.

2. Confirm next whether the map the Autoware has
read is available to the self-localization of Autoware.

3. Evaluate the accuracy of self-localization between
the map created from the proposed method and the
one generated by the LiDAR (normal method).

3.2. Experimental environment and preliminary ex-
periments

The spherical camera, Insta360 ONE X2 (Insta360),
was used in all experiments. Its specifications are sum-
marized in Table 2.

Photos of the LiDAR and AMR used in the experi-
ments are shown in Fig. 3 and Fig. 4 respectively. The
specifications of the LiDAR and the AMR are listed up
in Table 3 and Table 4, respectively.

As the result of the camera calibration, we obtained the
parameter values in Table 5. These parameter values are
fx and fy for the focal length, cx and cy for the optical
center, and k1, k2, k3, and k4 for the distortion of the
captured image.

Fig. 3 LiDAR [Velodyne VLP-16]

Table 2 Specification of spherical camera

Product name Insta360 ONE X2
Manufacturer name Insta360

Display size diameter 2.54 cm
Resolution 5.7 K

Focal length 7.2 mm
Pixel count 18 MP

Maximum ISO 3200
Maximum shutter speed 1/8000

Table 3 Specification of 3D LiDAR, Velodyne VLP-16

Maximal measurement distance 100 m
Horizontal field of view angle 360◦

Vertical View Angle 30◦

Number of measurement points 300000 points per second
Rotation speed 5–20 Hz

Accuracy ±3 cm

Fig. 4 Autonomous Mobile Robot (AMR) utilized in the
experiments.

As a preliminary experiment, we recorded a video with
walking along the corridors in the building of the Fac-
ulty of Engineering at Gifu University, which is approxi-
mately 40 m x 80 m in size. From this video, we created
a point cloud using OpenVSLAM. Fig. 5 shows a PCD
map generated from the extracted feature points in the
spherical camera images.
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Table 4 Specification of AMR

Item Performance
Weight of the desired load 50 kg

Body weight 70 kg
Charge time 5 hour

Maximum speed 6 km/h
Overcomeable steps 5 cm

Climbing ability 10◦

Mileage 16 km
Minimum turning radius 760 mm

Table 5 Camera parameters of Insta360 ONE X2

Internal parameter
fx 1596.963
fy 1789.927
cx 2275.826
cy 177.4559
k1 0.093676
k2 -0.0384
k3 -0.12637
k4 0.00026

Fig. 5 PCD map from Insta360 ONE X2

3.3. Experiment 1: Availability of the created PCD
map

The purpose of this experiment is to confirm whether
the 3D PCD map created from the procedure in Sec-
tion 2 is available for the LiDAR self-localization. The
conditions for generating point clouds are very differ-
ent between LiDAR scanned images and camera images.
LiDAR can generate point clouds anywhere light is re-
flected, while the point clouds from the camera are lim-
ited to areas with specific characteristics, such as ex-
tremely bright areas within the image or corners of a win-
dow frame. So, as a preliminary experiment, we check
that a 3D PCD map from the camera images is certainly
available for the LiDAR self-localization.

As expected, Autoware encountered an error; it could
not even read the map generated by OpenVSLAM: need-
less to say, it was far from utilizing for the LiDAR self-
localization either.

We here inferred that one of the crucial reasons exists
in the low density of the generated 3D PCD map. There-
fore, we recorded the building several times to increase

Table 6 Parameter of camera config.yaml and the
number of points.

Paremeter value
Parameter name 1 2 3 4

feature.max num keypoints 2000 10000 10000 15000
feature scale factor 1.2 1.5 1.5 1.5
feature num levels 8 6 5 5

feature ini fast threshold 20 20 20 20
feature min fast threshold 4 4 7 7

Total number of point clouds 30911 51871 61580 72260
Matching NG NG OK NG

Fig. 6 Matching between PCD map and scan data

the number of point clouds. Then, to shorten the record-
ing time, we reduced the recorded area to half.

To see the increasing effect of the recording num-
ber, we changed the values of the parameters in cam-
era config.yaml with fixing the number of laps to record
at three, and compared the total number of point clouds
in the created map. The results are shown in the table 6.

The total number of point clouds increases with the
maximum value of feature points that can be extracted in
one video frame.

To evaluate what number of point clouds is sufficient
for self-localization, we attempted to estimate the self-
localization by LiDAR based on the resulting map.

Fig. 6 shows the matching between the created map
and the scan data. The possibility of self-localization is
summarized in the last row of Table 6, implying that the
matching fails even when the total number of point clouds
is large. Table 7 shows the matching result for the third
map in Table 6 that was the only case where the positive
result was obtained.

In short, although the total number of point clouds in-
creased, the self-localization were sometimes failed. This
result brought us the following idea: the corridor may
have been unsuitable for feature point extraction due to
the similar camera images from its uniform background.

3.4. Experiment 2 : Creating a map at a preferable
location for feature point extraction

3.4.1. Experimental environment
Experiment 1 indicated that the preferable location for

the feature point extraction from the camera images are:
1. an area including many feature point candidates

such as wall borders and window frames.
2. a compact area that enables us to record in many

times, repeatedly.
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Table 7 Parameter of camera config.yaml and the
number of points.

Parameter value
Parameter name 1 2 3 4 5 6 7 8

feature.max num keypoints 20000 30000 30000 20000 20000 30000 30000 20000
feature scale factor 1.4 1.5 1.5 1.2 1.4 1.45 1.3 1.4
feature num levels 8 7 8 7 8 8 8 8

feature ini fast threshold 20 20 20 20 20 20 20 20
feature min fast threshold 7 7 7 7 7 7 7 7

Total number of point clouds 11036 10984 8662 16802 20712 18890 22930 20390
Matching OK OK NG NG OK OK OK OK

Fig. 7 Comparison of the PCD map with LiDAR scan
data

Thus, the next experiment was conducted in such a loca-
tion, a student laboratory in the Faculty of Engineering
Building, Gifu University

In this experiment, we recorded the video in 10 laps.
As is the same as in Experiment 1, the number of point

clouds and the availability of position estimation were in-
vestigated for the maps created from the different param-
eter values in camera config.yaml. Table 7 shows the val-
ues of the parameters and the total number of point clouds
on the map. The matching results to the LiDAR scan data
were also described.

Fig. 7 shows a part of the overlaid scan data on the
successfully matched map.

Extract feature points, we noticed that the total num-
ber of point clouds and the scale of the map were different
between No. 5 and No. 8 of Table 7. Therefore, we trans-
formed the map scale to fit the actual size of the room.

Fig. 8 shows the scale-adjusted map, and Fig. 9 shows
the self-localization using the scaled 3D map and LiDAR
scan data on Autoware.

As we can see, the 3D PCD map and the scan data
from the LiDAR are overlapped well. Because the Li-
DAR scan data and the 3D map were matched well even
at different positions, we expected that this map would
be available for self-localization. The simulation based
on this map and the LiDAR scan data demonstrated auto-
matic driving as shown in Fig. 10.

From the above, the map created from OpenVSLAM
needs to be adjusted in scale, and if this rescaling is
done properly, the resulting map works well for self-
localization using LiDAR.

3.5. Experiment 3: Evaluating the Accuracy of Self-
localization

In the last experiment, we compare the accuracy of
self-localization using Autoware between two maps, one
created with a spherical camera (proposed method) and

Fig. 8 Scaled PCD map.

Fig. 9 Succeeded self-localization of AMR

Fig. 10 Autonomous driving of AMR

the other created with LiDAR (conventional method).

We here evaluated how much the result of self-
localization against the target route differs depending on
the map utilized during automatic driving. The experi-
ment is conducted in the same student laboratory as in
the previous section.

At first, the AMR is manually moved along the path set
for the automatic driving, as shown in Fig. 11. Namely,
this data is used as the target route for automatic driv-
ing. Autoware generates the actual reference trajectory to
smoothly connected to the points in this target route. The
reference trajectory becomes the same even if the map for
self-localization is different.

Table 8 describes one result of automatic driving com-
paring the positions between the target path and the actual
point in the experiment using two kinds of maps.

Fig. 12 is a graphical representation of the result of
Table 8.

In THIS experiment, the map created by OpenVS-
LAM achieved the same accuracy as the LiDAR map.
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Fig. 11 Path in the experiments.

Table 8 Automatic driving results

Travel path LiDAR map OpenVSLAM map
x[m] y[m] x[m] y[m] x[m] y[m]

0.3943 0.1485 0.5891 -0.1584 0.2165 -0.2119
1.394 0.2582 1.3936 0.4696 1.1922 0.1768

2.3951 0.3221 2.3848 0.2876 2.1969 0.2998
3.4129 0.3425 3.4572 0.4342 3.1947 0.2202
4.2284 0.9459 4.2623 1.0307 4.1011 0.8491
4.1829 1.9603 4.2499 2.1183 4.2991 1.84
4.032 2.9825 3.7142 2.9646 4.1492 2.9124

3.0361 2.7652 2.6034 2.8825 3.1261 2.9886
1.9961 2.7434 1.6891 2.8325 2.0668 2.9926
0.9648 2.7575
0.557 1.8184

0.3318 0.8042

Fig. 12 Comparing Autonomous driving

4. CONCLUSION

In this study, we introduced a spherical camera to
create a 3D map of the environment for AMR self-
localization instead of the 3D LiDAR. OpenVSLAM ex-
tracts feature points such as wall boundaries and window
frames from the video of the environment captured by
the spherical camera. The extracted feature points were
then converted into a 3D PCD map. Unfortunately, this
3D map is not always created on the same scale as the
actual environment. Therefore, the scaling of the map is
required at this stage using the application software. This
scale fitting is an important process to utilize the Open-
VSLAM map for the LiDAR self-localization. Through
several experiments, we have confirmed that the scaled

maps have sufficient information for self-localization and
have finally achieved automated driving.

However, this success is limited to cases with prefer-
able conditions, such as narrow areas where many edges
can be detected easily. In the future, we will tackle clari-
fying the conditions and methods to increase the number
of feature points that can be extracted by OpenVSLAM,
and to extend the method so that it can be applied to cases
with unfavorable conditions.

ACKNOWLEDGE
This work is supported by Human resource develop-

ment and research project on production technology for
aerospace industry: Subsidy from Gifu Prefecture.

REFERENCES
[1] Accessing or extracting point cloud data directly or

via a written database file,
https://github.com/xdspacelab/openvslam/issues/

[2] CloudCompare 3D point cloud and mesh processing
software Open Source Project,
http://cloudcompare.org/

[3] T. Azumi, D. Hukutomi, S. Tokunaga, S. Seiya
“Autoware Introduction to Automated Driving Soft-
ware”,
Rick Telecom Inc., 2019

[4] Conducted a study on AGV/transfer robot market (in
Japanese),
https://www.yano.co.jp/press-
release/show/press id/2507, 2020

[5] Collaborative Robot BLOG So much has changed!
The New Common Sense of Premise Transport No.2:
Difference between AGV and AMR (in Japanese),
https://www.kyodo-robot.com/blog amr/202004-
amr2

[6] K. Sakurada, “OpenVSLAM: A Versatile Visual-
SLAM Framework”,
Proceedings of the 27th ACM International Confer-
ence on Multimedia 2019 Pages 2292-2295

[7] A. Hosaka, K. Aoki, S. Tsugawa, “Automatic driving
System configuration and elemental technologies”,
Morikita Publishing Co., 2015

[8] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M.
Hirabayashi, Y. Kitsukawa, A. Monrroy, T. Ando,
Y. Fujii, and T. Azumi,“Autoware on Board: En-
abling Autonomous Vehicles with Embedded Sys-
tems,” In Proceedings of the 9th ACM/IEEE Inter-
national Conference on Cyber-Physical Systems (IC-
CPS2018), pp. 287-296, 2018.

[9] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K.
Takeda, and T. Hamada. “An Open Approach to Au-
tonomous Vehicles,” IEEE Micro, Vol. 35, No. 6, pp.
60-69, 2015.

409


