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Abstract: Parallel processing is an important factor for fast image processing in the computer vision as well as human
visual systems. From this point of view, this paper treats the figure-ground separation problem in the random dot kine-
matogram. To achieve this separation, the optical flow is discretized in the five vectors, each of which the flag is assigned
to indicate its correct direction in each pixel. The recognition process is described as the flag dynamics, which is given as
the gradient system of the global potential functional. The performance is examined with computer simulations.
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1. INTRODUCTION

A human visual system is constructed with a paral-
lel operating structure that enables us to process a large
amount of image information in the real-time. Some
important processes such as edge detection, an optical
flow calculation, shape from shading and so on are called
an early vision, and mathematically explained using the
framework of regularization theories [1].

Yuasa et al. has described a visual processing algo-
rithm of auto-associative memories[2], binocular stere-
ograms[3] and figure-ground separations in animation [4]
using a special class of differential equations, reaction-
diffusion equations. In this paper, we also consider a
method for the figure-ground separation in random dot
animations using the reaction diffusion equations, where
we aim at distinguishing multiple objects (figures) in the
image.

2. RELATED WORKS

Animations are constructed from many slightly-
different images. Fast serial switching of these images
allows us to recognize the movement in the animation.
Each image in the animation is called here frame.

In the normal animation, each frame possesses some
features such as edges, moment, color and so on. Be-
tween two consecutive frames, the deviation of these fea-
tures is detected. Based on this deviation, human could
recognize the motion in the animation. However, hu-
man can recognize some moving parts (i.e., figures) from
the background (ground) even in the random dot kine-
matogram (RDK), which is an animation consisting of
the random dot images. Obviously, the frame in the RDK
is a random dot image. Thus, there are no features in
the random dot frame. This fact indicates that human
never utilizes some features found in the still image for
figure-ground separation in animation. In other words,
human visual system possesses a recognition mechanism
of figure-ground separation that does not need any im-

age features. Our interest here exists in explaining such a
human visual processing by the computational approach.

Regarding visual process of RDK, Ueyama et al. [4],
[5] have succeeded a figure-ground separation by describ-
ing the recognition process with the bistable Ginzburg-
Landau equation. Further, Okura et al. [6] proposed a
method for restoring the 3D shape of objects that are sep-
arated from RDK as figures.

In these works, however, the figure-ground separations
are executed in two steps. Firstly, the optical flow is cal-
culated in each pixels. Next, the clustering of figures is
performed based on the information of the optical flow.
Then, each of two steps includes the minimization pro-
cess. This double minimization process makes an amount
of the computation large. From this point of view, we
here consider an algorithm and a system structure of the
RDK processing, and aim at describe the figure-ground
separation as a single minimization process. We report
a simple simulation to evaluate the recognition perfor-
mance of this system.

3. SYSTEM CONSTRUCTION

3.1 Assumptions
To make a problem simple, we assume the followings

on the RDK.
• The image consists of the random dots in black and

white.
• The figure and ground neither rotate nor be scaled.
• The translation of the figure and ground are limited

in four directions: up, down, right and left.
• The translation distance during one frame interval is

at most 1 dot.
Owing to these assumptions, we can discretize the optical
flow in only five vectors. The figures are clustered based
on this restricted optical flows.

3.2 Basic idea
The flags are prepared to each pixel of the image. This

flag represents the moving direction of its pixel which
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Fig. 1 Example of figure-ground separation.

is represented as the discretized optical flow. Thus, 5
flags are provided: up, left, still, right, and down flags.
Between two consecutive frames, the moving direction
should be uniquely determined in each pixel except the
occlusion area. Hence, among five, only one flag must be
set at each pixel.

Now, the figure-ground separation is represented as
clustering the flags in each flag plane. The flag plane is
a plane that is constructed by picking up a flag represent-
ing same optical flow from each pixel and aligning it in
the same order as the pixels from which the flag is picked
up. In the case of the Fig. 1, for example, the central part
is moving to the left, while the background is moving to
the bottom. Then the up, still and right flags should be
reset in all the pixels and the left and down flags should
be partly set in the corresponding pixels.

3.3 Recognition dynamics

We construct the dynamics from viewpoint of the lo-
cal parallel processing. When we attempt to determine
the flag value from the local image information, we will
sometimes obtain incorrect results due to the locality of
the information. These results should be corrected for the
correct recognition. Here, we achieve this correction by
introducing the dynamical process during which the local
information spreads to the neighboring area. The spread
of the local information is expected to compensate the
shortness of the information on the whole images.

In order to define the dynamical process, the flag is
assumed to take continuous value between 0 and 1. The
dynamical process is defined to the flag values so that
they are determined appropriately, i.e., the steady state
should be given as illustrated in Fig. 1.

Here, we define some notations. np(x, y) denotes the
pixel value at the coordinate (x, y) in the n-th frame,
and nfk(x, y, t) is flag value there. t is a time in the
recognition process and k distinguished the direction.
k = 1, 2, 3, 4, 5 respectively represents up, left, still, right
and down direction.

Generally speaking, the optical flow possesses the fol-
lowing features.

• The optical flow is uniquely determined in each pixel
except the occlusion area.

• The optical flow is almost continuous in the image
except the boundary of the figures.

The first feature indicates that only one flag should be
set among five flags of each pixels, as mentioned the
above. The second feature means that the neighboring
flags in the flag plane usually takes the same values. This
results from the fact that the boundary between figure
and ground, which causes the discontinuity of the opti-
cal flow, is relatively small in one image. Based on these
features, the flag dynamics are constructed below.

To achieve the first feature, the competitive interac-
tion is introduced among 5 flags in each pixel. As such
a competitive interaction, the winner-take-all interaction
which is proposed in the Synergetics[7] is adopted. This
interaction is described as the gradient system with the
following potential functional
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Here, we omit the frame number n. This interaction
makes the sole flag converge to 1 while all the other con-
verge to 0.

Regarding the second feature, the diffusion process is
introduced. The diffusion process is one of the local inter-
actions that possessing the averaging action. This process
should be defined in each flag plane so that the flag val-
ues are corrected by the effect of the neighboring optical
flow information. The diffusion process require boundary
conditions. Then, the total sum of the flag value contains
global information that indicates the ratio of the optical
flow direction in the entire image. Thus, boundary condi-
tions such that keep the total sum of the flag values in the
flag plane should be imposed.

The total dynamics are construct by combining the
above two interactions. As a result, the flag dynamics
are described as a reaction-diffusion equation:

τ
dfk

dt
= −∂Vr

∂fk
+ KD∆fk (2)

Here, ∆ is Laplacian operator, τ is a time constant and
KD is a diffusion coefficient.

The above dynamics (2) is also described as the gradi-
ent system

τ
dfk
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= − ∂V

∂fk
(3)

whose potential functional is given as follows.

V =
∫∫

Ω

[
−1

2

5∑
k=1

f2
k +

1
4

5∑
k=1

∑
k′=k

f2
kf2

k′

+
1
4

(
5∑

k=1

f2
k

)2

+ KD(∇fk)2


 dxdy (4)



RDK Up Flags Left Flags Still Flags Right Flags Down Flags

Fig. 2 Simulation result



Here, ∇ is the spatial differential operator. The steady
state of the dynamics (2) corresponds to the minimum of
this potential function. In other words, the figure-ground
separation is a minimization process of the functional (4)
in this system.

3.4 Initialization
The initial value of the above dynamics is determined

in such a way that the pixel values in two consecutive
frame images are compared. Note that the initialization
process should be also executable by the local parallel
operation. Thus, the flag values are initialized based on
only the local information of the neighboring pixels as
follows.

nf1(x, y, 0) = (n−1p(x, y) ·n p(x, y − 1))D(x,y) (5)

nf2(x, y, 0) = (n−1p(x, y) ·n p(x − 1, y))D(x,y) (6)

nf3(x, y, 0) = (n−1p(x, y) ·n p(x, y))D(x,y) (7)

nf4(x, y, 0) = (n−1p(x, y) ·n p(x + 1, y))D(x,y) (8)

nf5(x, y, 0) = (n−1p(x, y) ·n p(x, y + 1))D(x,y) (9)

(f · g)D(x,y) =
〈f · g〉D(x,y)

〈f · f〉D(x,y) 〈g · g〉D(x,y)

(10)

〈f · g〉D(x,y) =
∫∫

D(x,y)

f(ξ, η)g(ξ, η)dξdη (11)

where D(x, y) denotes the neighbor of the coordinate
(x, y). The initialization is equivalent to the correlation
between the current local image and the 1-dot-shifted lo-
cal image at the next frame. This initialization provides
the information of the moving direction, i.e., optical flow,
of each pixel in a parallel operating manner.

4. SIMULATION

Using the RDK as shown in the left side of Fig. 2, we
examine the system performance for the figure-ground
separation that is proposed in the above section. This
RDK consists of 20 frames, each of which has 100x100
dot in size. Although not be observed in the still frame
image, two square areas are moving. One moves from
the bottom to top in the right side, while the second one
moves downward in the left side. This RDK satisfies the
assumptions in section 3.1.

In the simulation, the 4th order Runge-Kutta algorithm
is used by 300 iterations with 0.001 step size. τ is set to
100, and KD is set to 100 for the first 0.1 [s] and after-
wards kept to 0. The area D(x, y) for initializing the flag
values is defined as 3×3 area that contains the coordinate
(x,y) in the center. To solve the partial differential equa-
tions, periodic boundary conditions are adopted to keep
the sum of flag values.

The dynamics is computed in each frame, so 19 out-
put is obtained for each flag plane. The first 10 outputs
are shown in Fig. 2 from the second to fifth row using a
flag plane representation. Because the large background
does not move in this RDK, the still flags are almost set
(white) except two square areas. The square area in the

left side moves upward, so the up flags are set only in
the corresponding area. The one in the right side moving
downwards makes down flags set in this area. No areas
move to the left and right sides, thus the all the flags in
the left and right flag plan are reset (black). As shown in
Fig. 2, almost correct separation are achieved.

5. CONCLUSION

In this paper, we consider a figure-ground separation
in RDK from the view point of the local parallel compu-
tations. For the realization, the optical flows are restricted
to the five vectors. The recognition process is defined as a
system described by the reaction diffusion equation. This
dynamics is represented as the gradient system of the po-
tential functional, implying that this dynamical process is
a minimization of the sole evaluation function. As future
works, we will try to remove some assumptions such as
no rotation or scaling, and extend this algorithm to more
general conditions.
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