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Abstract: This paper considers torque pattern learning for balance control with respect to un-
known periodic external forces. To cope with uncertain factor of environment, the feedback control
is essential. For balancing problem, we propose a control method based on the ground reaction
force feedback. When external force is periodic, the torque pattern becomes regular. Learning this
torque pattern, the feedback information is less important. We show this learning process by the
experiment.
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1. Introduction

An application of control technology is found in the field
of mechatronics, especially robotics. Because the appli-
cation of robots widely spreads, a problem that condi-
tions of robot environment cannot be described at the
designing stage of robot controller arises. For such un-
certainties of environment, animals like which we make
robots behave certainly utilize a feedback signal. How-
ever, when the environmental conditions are clarified
through repeated behaviors, animals learn appropriate
motor behaviors to the current environment, and mem-
orize them as motor patterns. Consequently, the motor
behavior will be generated without less feedback infor-
mation. Such a motor learning is important factor to
construct robots that possesses adaptability or versatil-
ity.

Along this line, we here consider how motor control
system learns motion patterns from uncertain environ-
ment by taking a static balance of upright standing as
an example. The upright standing is well described as
an inverted pendulum, one typical example of unstable
controlled system, with small support. This smallness
limits output torque at the base of the inverted pendu-
lum: large torque makes the support rotate around its
end. To express uncertainties of environment, we in-
troduce unknown external force exerted to the inverted
pendulum. Thus, the goal of this problem is to keep the
balance with small base torque even under unknown ex-
ternal forces. This goal will be achieved by use of feed-
back information to the balance control. Now, assume
an unknown external force possess regularity such as pe-
riodicity. In this case, humans, one of animals that can
stand upright, achieve such a balancing task by learning
the torque pattern for balancing from its regularities.
As a result, the importance of the feedback information
decreases in the controlling task. One of the purposes
in our study is to describe such a learning process and
to examine its feasibility by the robot motion.

For the static balance, we proposed a control method
under unknown constant external force and a learning
method for unknown periodic external force based on
the above scenario1, 0, 0) . However, in these works, the
period of periodic external force had to be known. In
this paper, we extend the above methods to cope with
unknown periodic external force with unknown period.
As a result, the static balance is kept with acquired
torque pattern that contains no feedback information
of the ground reaction force.

This paper is organized as follows: in the second sec-
tion, we review our studies for static balance control and
its torque pattern learning, and clarify the problems we
left. In the third section, we propose a new method to
solve it. The fourth section shows robot experiments
and the last fifth section gives concluding remarks.

2. Previous studies

2.1 A model for balance control

We adopt a simple mathematical model for standing
posture as shown in Fig. 1(a). This consists of two
links, a body segment and a foot segment. The motion
is restricted in the sagittal plane, and the symmetrical
foot segment contacts the ground at only two points,
i.e., toe and heel, which is the both ends of foot seg-
ment. Two kinds of sensory signals are available: ankle
joint, i.e., angle θ and it velocity θ̇, and ground reaction
force at the contact point. The information of ground
reaction force is only on the vertical component, which
are denoted by FT (at the toe) and FH (at the heel).
Expressing uncertainties of environment, unknown ex-
ternal force exerted to the center of the body segment
is introduced. The horizontal and vertical components
of unknown external force is denoted by Fx and Fy,
respectively.
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The motion equation of this model is described as

Iθ̈ = MLg sin θ + FxL cos θ − FyL sin θ + τ,

= FAL sin(θ − θf ) + τ (1)

where I is the inertial moment of the body segment
around the ankle joint, M is its mass, L is the length
between the ankle joint and its COG, g is the grav-
itational acceleration, FA is a magnitude of resultant
force exerted to the COG of the body segment that is
calculated as

FA =
√

(Mg − Fy)2 + F 2
x , (2)

and

tan θf = − Fx

Mg − Fy
. (3)

The main important purpose here is to keep the static
balance of this model with respect to this unknown ex-
ternal force.

2.2 Balance control with ground reac-
tion force feedback1, 0)

For this purpose, we newly introduced feedback of
ground reaction forces. We constructed an ankle joint
torque τ so that the two ground reaction force FH and
FT become the same at the stationary state:

τ = −Kdθ̇ −Kpθ + Kf

∫
(FH − FT )dt. (4)

where, Kd, Kp and Kf are feedback gains. If the un-
known external force is constant, a posture where the
moment produced by the external force is cancelled by
the gravitational force, as shown in Fig. 1(b), becomes
stationary. The ankle joint angle then is θ = θf . Fur-
thermore, based on the linearization around the steady
state, this posture becomes locally asymptotic stable if
the feedback gains hold the following inequalities:

Kp > FAL > 0 (5)

`

I
Kd > Kf > 0 (6)

(Kd`−KfI)Kp > Kd`FAL (7)

Here, ` is the distance from ankle joint to the end of the
foot segment.

In summary, the control law (4) achieves the balance
control with respect to unknown external force, uncer-
tain factors of the environment. The stationary posture
of this control law alters with the unknown external
force, since the θf depends on the magnitude of Fx and
Fy. The position of CoP (i.e., ZMP) 0) goes to the mid-
dle of the foot segment and then the ankle joint torque
becomes zero as the moment from gravity and external
force cancel out each other.

(a)link model. (b)stationary state.

Figure 1: Model and stationary posture by control law
(4).

2.3 Torque pattern learning for periodic
external force0, 0)

In the control law (4), the feedback information on
ground reaction force is essential to cope with unknown
external force. However, when the unknown external
force is constant, the feedback information is unneces-
sary since the ankle joint torque is zero. It indicates
that, if the environment is stationary, static balance is
maintained without feedback information on ground re-
action force. Now, we extend this idea to dynamically
stationary case, i.e., unknown external force is periodic.
At the first step, the period of the unknown external
force Te is assumed known.

We constructed the torque as the summation of two
term: feedforward term [F.F.], and feedback term in-
cluding information on ground reaction force.

τ = [F.F.] +
[
−Kdθ̇ −Kpθ + Kf

∫
(FH − FT )dt

]
(8)

Note that the second feedback term is the same as (4),
owing to which the balancing is expected to be main-
tained regardless of unknown factors.

Next, we proposed a learning law for the first term.
The criterion of the learning was to replace the second
term by the learned first term. From the assumption,
periodic external force is expanded as Fourier series:

Fx =
n∑

k

{
α

(x)
k Sk + β

(x)
k Ck

}
(9)

Fy =
n∑

k

{
α

(y)
k Sk + β

(y)
k Ck

}
(10)

where, Sk = sin kωet, Ck = cos kωet and ωe = 2π/Te.
Substituting (1) by (9) and (10), we obtain

Iθ̈ −MLgS −
n∑

k

{
α

(x)
k Sk + β

(x)
k Ck

}
LC

+
n∑

k

{
α

(y)
k Sk + β

(y)
k Ck

}
LS = τ (11)
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Here, C = cos θ and S = sin θ. Furthermore, the right
hand side of this equation is expressed as a linear form
for unknown parameter vector σ:

Y σ = τ (12)

Y =
[
θ̈, S, S0C, C0C, S0S,C0S,

· · · , SnC, CnC,SnS, CnS] (13)

σ =
[
I,−MgL,−Lα

(x)
0 ,−Lβ

(x)
0 , Lα

(y)
0 , Lβ

(y)
0 ,

· · · ,−Lα(x)
n ,−Lβ(x)

n , Lα(y)
n , Lβ(y)

n

]T

(14)

Here we define a new parameter vector φ as

φ = KIσ (15)

where
KI =

Kd`

Kd`−KfI
(16)

and, with its estimates φ̂, we give a control law as follows

τ = Yrφ̂−Kds (17)

Yr =
[
θ̈r, S, S0C, C0C, S0S, C0S,

· · · , SnC, CnC,SnS, CnS] (18)

θ̇r = −Kp

Kd
θ (19)

s = θ̇ − θ̇r − Kf

Kd
τf (20)

In addition to this control law, we define a learning
dynamics of parameter φ as

˙̂
φ = −ΓY T

r s (21)

where, Γ is a positive definite diagonal matrix.
According to the above learning law (21), the second

term of (17) goes to zero. This is shown by Lyapnov
like lemma0) with Lyapnov function candidate

V =
1
2
(KIs

2 + φ̄T Γ−1φ̄) (22)

As a result, the feedback term replaced by the feedfor-
ward term by learning, and the torque generation turns
to be independent of the information on the ground re-
action force.

3. Extension to external force
with unknown period

The learning is essentially an estimation of external
force described by the Fourier series. Then, the period,
or angular frequency ωe, of the external force must be

known, since the basis functions of Fourier series are si-
nusoidal functions with ‘known’ basic frequency. How-
ever, the period of unknown external force is usually
unknown too. Thus, this formulation is not available in
the normal way for general unknown periodic external
force.

To solve this problem, we propose a method for es-
timating the angular frequency ωe, more precisely, for
generating sin kωet and cos kωet, based on the oscilla-
tion forced by the external force. When the standing
posture is maintained, the motion of the ankle joint,
i.e., θ̇ should change with the same period as that of
the external force. This implies that, by observing the
ankle joint motion, the period of unknown external force
may be detected. Thus, we construct a passive oscilla-
tor element inside the controller and make it interact
with the external force. If the entrainment happens be-
tween them, the internal passive oscillatory element is
synchronized with the external force.

The oscillation is generally represented by three pa-
rameters: amplitude, frequency and phase lag. To es-
timate these three parameters, at least three equations
are necessary. Thus, we describe the internal oscilla-
tory element as the differential equation, whose state
variables are more than three, with the forced input
from the ankle joint motion θ̇:

x(n) + pn−1x
(n−1) + · · ·+ p0x = qθ̇, (n ≥ 3). (23)

Here, x(i) is the i-th order derivative of x, and pi and q
is a constant.

The above equation works as the n-th order low-pass
filter for appropriate parameters. Thanks to this low-
pass property, we here assume that the lowest frequency
component, i.e., basic frequency of the external force
should be obtained. Describe it as

x = xA sin(ωet + α) (24)

and then three of state variables of internal oscillation,
i.e., (x0, x1, x2) = (x, x(1), x(2)) are theoretically de-
scribed as

x0 = xA sin ξ (25)
x1 = xAωe cos ξ (26)
x2 = −xAω2

e sin ξ (27)

Here, ξ = ωet+α. Solving the above three equations to
three unknown parameters xA, ωe and ξ, we calculate
sin ξ and cos ξ that correspond to the basic oscillation.
The harmonic components are obtained by the recur-
rence formula:
[

cosnξ
sin nξ

]
=

[
cos ξ − sin ξ
sin ξ cos ξ

] [
cos(n− 1)ξ
sin(n− 1)ξ

]
(28)

By the way, because the Fourier expansion is applied
to only the unknown external force, Y in (12) includes
not only Sk and Ck but also θ and θ̇. However, the
behavior of balancing motion adjusting with periodic
external force should be also periodic. In addition, its
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Figure 2: Apparatus. (a) Balancing robot. (b) sole with loadcells. (c) slope stand.

Figure 3: Photos of robot experiment on swaying slope stand.

period should be the same as that of the periodic ex-
ternal force. This indicates that θ as well as θ̇ are also
expended to Fourier series. Consequently, the whole left
hand side of (11) can be described as the Fourier series
consisting of the fundamental basis function sin ξ and
cos ξ. Thus, in (11), we define Y as

Y = [sin ξ, cos ξ, · · · , sin nξ, cos nξ] (29)

and σ as a column vector of Fourier coefficients for cor-
responding frequency, instead of (13) and (14). Because
this formulation gives no effect to the following analy-
sis, we utilize Yr derived from (29) for the control and
learning.

4. Experiments

4.1 Setups and conditions

A simple two-link robot, as illustrated in Fig. 2(a), is
used to verify the theoretical framework in the previous
section. The body segment is 0.5[m] and the foot seg-
ment is 0.1[m] length. A 20[W] DC servo-motor with
53:1 reduction gear is installed 0.046[m] height at the
middle of the foot segment. This motor is directly con-
nected to the body segment. As shown in Fig. 2(b),

four force sensors are attached at the corner of the sole.
They detect the vertical components of the ground re-
action FT and FH by summing up two of them, respec-
tively. The ankle joint angle is detected by the rotary
encorder installed at the motor of the ankle joint.

The passive internal oscillatory element is prepared
based on the 3rd-order Butterworth filter. Because the
period of the external force is unknown, the break fre-
quency cannot be set in advance. However, we here
restrict the problem to balance control of the robot:
The external force around 1[Hz]-order basic frequency
is very rare. Even if such a high-frequency force were
exerted, the balance would be maintained in a feedback
manner due to its rapid alterations and thus, in our
opinion, the learning from its periodicity would not be
observed in the real balancing task. On the other hand,
for a slow external force less than 0.01[Hz], an intermit-
tent feedback control will be sufficient and so it is not
necessary to learn motion pattern. Consequently, we
consider that the learning is effective for external force
around 0.1[Hz] basic frequency. This is a reason why
we set the break frequency of the filter at 0.2[Hz].

To solve the equations (26)–(27), we calculate ξ at

- 2650 -



-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

0 10 20 30 40 50 60 70 80 90 100
(s)

(Nm)

(a) Feed forward term.

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

0 10 20 30 40 50 60 70 80 90 100
(s)

(Nm)

(b) Feedback term.

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

0 10 20 30 40 50 60 70 80 90 100
(s)

(Nm)

(c) Total torque.

Figure 4: Balance control experiment under 0.1Hz periodic external force.

first from the relation

ξ = atan2(x1, sgn(x0)
√−x0x2)(if x0x2 ≤ 0) (30)

and then compute sin ξ and cos ξ. Here, sgn(x) is a
function that returns the sign of the argument x. In the
experiments, however, the case where x0x2 > 0 appears.
In this case, we keep ξ at the current value.

To provide stationary environmental conditions, we
construct the slope stand driving by DC servo-motor,
as shown in Fig. 2(c). Instead of generating the peri-
odic external force, we periodically vary the gradient of
the slope stand. The amplitude of the gradient varia-
tion is 0.12[rad], and two frequencies are set, 0.1[Hz] and
0.2[Hz]. The parameters are set as follows: Kd = 12,
Kp = 70, Kf = 2, n = 8, Γ = [5, · · · , 5]. The 3rd-order
Butterworth filter is adopted as a internal oscillatory
element and its state variables are computed by nu-
merical integration followed by 4th order Runge-Kutta
method. In the experiments, a 0.415[kg] weight is at-
tached at the body segment 0.25[m] height from the
ankle joint to adjust the center of mass height. The
control and learning interval is set to 2[msec] and the
duration of experiments is 100[sec]. So as to stabilize
the robot motion, the learning of the feedforward term
turns effective 15[sec] after the start of the experiment

4.2 Results

The robot adjusted the ankle joint to prevent itself from
tumbling on the moving slope stand, as depicted in Fig.
3. The experimental results are illustrated in Fig. 4 and
Fig. 5, where frequency of the moving slope stand is re-
spectively 0.1[Hz] and 0.2[Hz]. In each figures, (a) shows
the feedforward component of ankle joint torque, (b)
does the feedback one and (c) does the total one which
is provided as the motor command. Although small
high-frequency vibration are left as unlearned compo-
nent, the adequate torque profile tend to be stored in
memory independent of frequencies of external forces.

5. Conclusion

In this paper, we extend our control and learning
method for static balance maintenance to cope with un-
known periodic external force with unknown period. As
a result, the static balance is kept with acquired torque
pattern that almost never contains feedback informa-
tion of the ground reaction force. The main issue here
is how to construct the basis functions of Fourier series
expansion for describing environment by observing the
effect of external force. For this purpose, we introduce
a passive oscillatory element inside the controller and
make it forcedly oscillate with ankle joint motion that
varies with external force. This passive oscillatory el-
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Figure 5: Balance control experiment under 0.2Hz periodic external force.

ement works as a low-pass filter and consequently the
basic oscillation of periodic external force is detected.
The basis functions are generated based on this scheme,
and the Fourier coefficients of this basis functions are es-
timated followed by the previous works. This scheme is
illustrated as in Fig. 6. In robot experiments, we put a
simple robot on the slope stand whose slope angle varies
periodically. We confirmed that the torque pattern is
learned to decrease the feedback term of the ground re-
action force in the torque component, regardless of the
frequency of the variation of the slope stand.
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