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SUMMARY
This paper considers the magnitude of the gripping power,
i.e., the internal force that depends on the grasping posture or
object orientation in a two-dimensional grasp by two contact
points with friction. Expressing the effect of variations in
the object posture as the direction of an external force,
we propose an “internal force diagram.” The internal force
necessary to create a statically stable grasp is depicted in
the object coordinate frame. Then, a polar coordinate system
is introduced in which the orientation represents the direction
of the external force, while the distance from the origin
represents the minimum necessary internal force. We
demonstrate a method based on friction cone configurations
to manually draw the internal force diagram, using only a
ruler and a compass. The validity of this drawing method is
confirmed by a comparison with computer-generated plots.
Finally, the characteristics of the internal force diagram are
discussed.

KEYWORDS: Grasping; Gripping power; Diagram
expression; Internal force magnitude; External force
direction.

1. Introduction
Grasping contains many redundancy problems.1, 2 Many
studies have focused on the selection of contact points or
joint torques,3–7 and many solution approaches have been
proposed.8–12

This paper deals with the problem of redundancy of
gripping power. The problem is that the gripping power
necessary to create a statically stable grasp depends on the
grasping posture, or the object orientation. A typical case is
shown in Fig. 1. Although no other joint torques are affected
by the object orientation, the gripping power varies with the
object orientation. Thus, it is difficult to determine the object
postures that are easy or difficult to grasp, and how much
gripping power is necessary or sufficient when the object
posture changes. To solve these problems, the magnitude of
the gripping power, i.e., the internal force, is investigated
when the external force being exerted on the Center of Mass
(CoM) of the object varies in direction. Such an external force

* Corresponding author. Email: satoshi@gifu-u.ac.jp

can represent a change in the object posture by considering
gravity as the external force.

We have modeled the situation in Fig. 1 as a two-
dimensional (2D) grasp by two contact points with friction,
and have analytically modeled an optimal object in the sense
that the least contact forces are required.13–15 However,
the problem of finding an object orientation that requires
the maximum internal force cannot be solved analytically
because of the complexity of the trigonometric calculations.
This is the reason we take a graphical approach in this paper.
The relative magnitude of the internal force required to create
a statically stable grasp is depicted in the object coordinate
frame using a polar graph whose orientation represents the
external force direction, including the gravity. Nakamura
et al.16, 17 proposed the concept of a marginal external force
for representing a power grasp in 3D space. Nakamura et al.
defined the marginal external force as an external force that
exists when a slip at the contact points is about to occur.
Conversely, this paper gives the necessary internal force that
can balance the effect of a given external force, although
the application is limited to a 2D grasp with two contact
points. Such an inverse approach is important for robotic
designs.

This paper is organized as follows. Section 2 describes
some assumptions, defines the problem, and gives a solution
by equations. This solution representing the relation between
the magnitude of the internal force and the direction of the
external force is illustrated as a diagram, i.e., a graph in
the polar coordinate system in Section 3. Here, a method to
draw this diagram is proposed. This method is completely
graphical, i.e., does not need any calculations. In Section 4,
the validity of our proposed method will be confirmed using
some examples of typical diagrams. Properties of this kind
of diagram are discussed in Section 5, and finally this paper
is concluded in Section 6.

2. Problem Formulation and Solution

2.1. Assumptions and problem
In order to facilitate our mathematical analysis, we assume
the following:

• An object is grasped at two contact points and resides in
2D space.

• The object is convex and rigid.
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Fig. 2. Variables and coordinate frame.

• The shape of the object is smooth at the contact points.
• The contacts are point contact with friction.
• An external force, which may include the gravitational

force, is exerted at the CoM of the object.

In order to grasp the object stably, a necessary magnitude
of the internal force varies with the direction of the external
force. So, our problem is to associate the magnitude of the
smallest internal force for stable grasp with respect to the
direction of the external force: Smaller internal force allows
us to maintain an object’s posture more efficiently with less
gripping power.

2.2. Formulation
2.2.1. Coordinate frame. The object coordinate frame is
defined with the origin at the object’s CoM with the y-
axis orthogonal to the line connecting the two contact points
as shown in Fig. 2. With this object coordinate frame, the
external force exerted to the CoM of the object is directed by
angle θ from the negative y-axis.

In the object coordinate frame, the coordinates of the
two contact points are denoted by p1 = (x1, y) and p2 =
(−x2, y)(�= p1), and the normals to the edge of the object at
these contact points make angles φ1 (CW) and φ2 (CCW)
from the negative y-axis. Here, x1 > 0, x2 > 0, y ≥ 0, and
0 < φ1 ≤ π , 0 < φ2 ≤ π .

2.2.2. Contact point conditions. If the friction cone of each
contact point contains the other contact point, then the object
can be grasped by these two contact points,1 as shown in the
right side of Fig. 2. This condition can be described with the
following inequalities:

−π

2
< φi − ξi <

π

2
< φi + ξi <

3π

2
(i = 1, 2). (1)

Here, ξi (0 < ξi < π/2) is an apex angle of the friction cone.
This comes from the conditions that the segment connecting

two contact points is under the upper lateral surface and
over the lower lateral surface of both friction cones. These
conditions actually restrict the range of ξi , i.e., provide the
lower limits of ξi in grasping this object at the points p1 and
p2.

2.2.3. Force balance conditions. Ni and Fi (i = 1, 2) are
defined as the normal and tangential component of the contact
force at each contact point. For stable grasp, not only must the
forces but also the moments be balanced among the contact
forces and the external force. This condition can be stated as

LF = M, (2)

where the contact force vector F and the external force vector
M are defined as follows:

F = [N1 F1 N2 F2 ]T , (3)

M = [−Fes Fec 0 ]T . (4)

Here, Fe is magnitude of the external force, s = sin θ , and
c = cos θ . The matrix L is called the grasp matrix, and
defined as

L =

⎡
⎢⎣

−s1 −c1 s2 c2

−c1 s1 −c2 s2

L31 L32 L33 L34

⎤
⎥⎦ , (5)

L31 = −c1x1 + s1y, L32 = +s1x1 + c1y,

L33 = +c2x2 − s2y, L34 = −s2x2 − c2y.

Here, si = sin φi , and ci = cos φi .

2.2.4. Contact force conditions. The normal force works so
as to only push the object:

N1 > 0, (6)

N2 > 0. (7)

In addition, the vector of the contact force must be included
within the friction cone. In other words, to keep contact
without slipping, the tangential force must never exceed
the maximal static friction force. This holds if |Fi | < μiNi ,
where μi is the friction coefficient at point pi . This condition
can be decomposed to the following four inequalities:

μ1N1 − F1 > 0, (8)

μ2N2 − F2 > 0, (9)

μ1N1 + F1 > 0, (10)

μ2N2 + F2 > 0. (11)

Generally, if the above four inequalities hold, then Eqs. (6)
and (7) are automatically satisfied. Thus, Eqs. (8)–(11) are
considered as contact force conditions throughout this paper.

2.2.5. Problem description. Now, the problem can be
mathematically described as follows:
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Definition 1. Under the contact point conditions (1), the
force balance condition (2) and the contact force conditions
(8)–(11) investigate the relation between the direction of the
external force θ and the magnitude of the internal force
required to create a stable grasp with friction.

Instead of the actual magnitude of the internal force, a
scaled parameter is introduced in the next section.

2.3. Solution
First of all, equality (2) is solved. This solution can be
represented as

F = L†M + (I − L†L)κ, (12)

where L† is a pseudo-inverse matrix of L that can be
calculated as L† = LT (LLT )−1, and κ ∈ R4 is an arbitrary
vector. Let the first term of the right-hand side be FT . Then
FT is given from the definition as follows:

FT = Fe

2(x1 + x2)

⎡
⎢⎢⎢⎢⎣

(x1 + x2)s1s + 2(ys − x2c)c1

(x1 + x2)c1s − 2(ys − x2c)s1

−(x1 + x2)s2s − 2(ys + x1c)c2

−(x1 + x2)c2s + 2(ys + x1c)s2

⎤
⎥⎥⎥⎥⎦ .

(13)

On the other hand, the second term of the right-hand side is
written as follows:

(I − L†L)κ = kFN. (14)

Here,

FN = Fe

2(x1 + x2)

⎡
⎢⎢⎢⎢⎣

2s1

2c1

2s2

2c2

⎤
⎥⎥⎥⎥⎦ , (15)

and k is a scalar value that is proportional to the magnitude
of the internal force exerted to the object. As the contact
forces are repulsive, k should not be negative. In summary,
the solution of equality (2) becomes

F = FT + kFN. (16)

Instead of the actual magnitude of the internal force, i.e., Fint,
the actual magnitude of the scaled parameter k is considered.
The relation between Fint and k is

Fint = k/(x1 + x2) · Fe. (17)

Namely, Fint is proportional to Fe, the magnitude of external
force being exerted to the CoM of the object. To calculate
Fint, k as well as the inverse of the distance between two
contact points must be multiplied to Fe.

Next, among the solutions, relation (16), the one satisfying
each inequality conditions (8)–(11), is considered. A large k

generically satisfies all these inequalities. Thus, the lower

limit of k is calculated. Now, let kn(θ) (n = 1, . . . , 4) be the
lower limit that satisfy each inequality condition (8)–(11).
These are given as follows from relation (16) substituted by
Eqs. (13) and (15):

k1(θ) = −x1 + x2

2
s + (x2c − ys) · c1μ1 + s1

s1μ1 − c1

= −x1 + x2

2
s − (x2c − ys) tan(φ1 + ξ1), (18)

k2(θ) = +x1 + x2

2
s + (x1c + ys) · c2μ2 + s2

s2μ2 − c2

= +x1 + x2

2
s − (x1c + ys) tan(φ2 + ξ2), (19)

k3(θ) = −x1 + x2

2
s + (x2c − ys) · c1μ1 − s1

s1μ1 + c1

= −x1 + x2

2
s − (x2c − ys) tan(φ1 − ξ1), (20)

k4(θ) = +x1 + x2

2
s + (x1c + ys) · c2μ2 − s2

s2μ2 + c2

= +x1 + x2

2
s − (x1c + ys) tan(φ2 − ξ2). (21)

In the above calculations, the relation between the apex angle
ξi and the friction coefficient μi is

tan ξi = μi (22)

as well as the following one was applied,

−ciμi ± si

siμi ∓ ci

= si ± ciμi

ci ∓ siμi

=
si

ci
± μi

1 ∓ si

ci
μi

= tan φi ± tan ξi

1 ∓ tan φi tan ξi

= tan(φi ± ξi), (23)

k = k(θ) that enables the grasp must be greater than all the
kn(θ),

k(θ) > kn(θ) (n = 1, . . . , 4). (24)

Thus, the smallest internal forces required for the stable
grasp, i.e., kgrasp(θ), is obtained by selecting the maximum
kn(θ) (n = 1, . . . , 4) at each θ within non-negative range:

kgrasp(θ) = max{k1(θ), k2(θ), k3(θ), k4(θ), 0}. (25)

This nonlinear, almost piecewise sinusoidal function,
kgrasp(θ), provides us necessary informations of internal force
through relation (17).

3. Graphical Expression of Necessary Internal Force

3.1. Motivations
In the previous paper,15 we analyzed the minimum points
of the internal force kgrasp(θ) and discussed their physical
meanings. However, it is difficult to mathematically explain
those of the maximum point of kgrasp(θ), i.e., the direction
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of the external force that requires the largest internal force.
That is why we try to draw the relative magnitude of the
necessary internal forces in the object coordinate frame, such
as Fig. 7, with respect to the direction of external forces. Here,
the relation between external force direction and internal
force magnitude is represented using the polar coordinate
system whose origin is set to the CoM of the object.
This graphical expression, i.e., we call here “internal force
diagram,” visually shows the minimum necessary internal
force when the direction of the external force varies.

3.2. Method
The internal force diagram is initiated by drawing each kn(θ)
(n = 1, 2, 3, 4) in Eqs. (18)–(21) in the object coordinate
frame.

Let us take k1(θ) as an example. The unit vector
representing the direction of the external force is defined
as

e(θ) = [
sin θ − cos θ

]T
. (26)

k1(θ) in Eq. (18) can be represented using the inner product
with e as follows:

k1(θ) =
(

−x1 + x2

2
+ y tan(φ1 + ξ1)

)
sin θ

− (x2 tan(φ1 + ξ1)) cos θ

= S1 sin θ − C1 cos θ

= V 1 · e(θ), (27)

where

S1 = −x1 + x2

2
+ y tan(φ1 + ξ1), (28)

C1 = x2 tan(φ1 + ξ1), (29)

V 1 = [
S1 C1

]T
. (30)

Here, plot the magnitude of k1(θ) in the direction of e(θ).
This is equivalent to drawing it in the polar system. Since e(θ)
is a unit vector, this is achieved by plotting a perpendicular
drawn from V 1 to e(θ), labeled as H1, as shown in Fig. 3.

This is because

k1(θ) = V 1 · e(θ)

= |V 1||e(θ)| cos σ1

= |V 1| cos σ1

= OH1, (31)

where σ1 is the angle between V 1 and e(θ).
Now, change the external force orientation θ . According

to the theorem of the inscribed angle, point H1 moves on the
circle whose diameter is V 1.

In an analogous way, draw k2(θ), k3(θ), and k4(θ) in the
object coordinate frame. Each of these involves a circle of
diameter V n, as shown in the following equations:

kn(θ) = V n · e (n = 2, 3, 4), (32)

where

V n = [
Sn Cn

]T
, (33)

S2 = +x1 + x2

2
− y tan(φ2 + ξ2), (34)

C2 = x1 tan(φ2 + ξ2), (35)

S3 = −x1 + x2

2
+ y tan(φ1 − ξ1), (36)

C3 = x2 tan(φ1 − ξ1), (37)

S4 = +x1 + x2

2
− y tan(φ2 − ξ2), (38)

C4 = x1 tan(φ2 − ξ2). (39)

Finally, kgrasp is obtained by selecting the largest kn, in
other words, the outermost circle in all radial directions.

3.3. Manual drawing steps
Vector V n (n = 1, . . . , 4) can be drawn if information about
the corresponding friction cones (i.e., position and angle of
the apex) is known. The steps for V 1 are listed below and
shown in Fig. 4(a).

Before that, P1x and P2x are defined as the intersections
of perpendiculars dropped from P1 and P2 to the x-axis. In
addition, the midpoint of the segment connecting them is
labeled as OM .

Manual drawing step of V 1 (see Fig. 4(a))

(1) Extend the upper side of the friction cone at P1 until
it intersects the x-axis and label the intersection as X1.
Then, OMX1 is equal to −S1 in Eq. (28).

(2) Draw a perpendicular from P2x to the upper side of the
friction cone at P1 (the line going through P1 and X1) and
label its intersection with the y-axis as Y1. Then, OY1 is
equal to −C1 in Eq. (29).

(3) Plot the point (−OMX1, −OY1) and define it as V 1.

The other points V n (n = 2, 3, 4) are plotted in a similar way.
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Fig. 4. Drawing steps of each vector V i (i = 1, . . . , 4). (a) Vector V 1; (b) vector V 2; (c) vector V 3; and (d) vector V 4.

Manual drawing step of V 2 (see Fig. 4(b))

(1) Extend the upper side of the friction cone at P2 until
it intersects the x-axis and label the intersection as X2.
Then, OMX2 is equal to −S2 in Eq. (34).

(2) Draw a perpendicular from P1x to the upper side of the
friction cone at P2 (the line going through P2 and X2) and
label its intersection with the y-axis as Y2. Then, OY2 is
equal to −C2 in Eq. (35).

(3) Plot the point (−OMX2, −OY2) and define it as V 2.

Manual drawing step of V 3 (see Fig. 4(c))

(1) Extend the lower side of the friction cone at P1 until
it intersects the x-axis and label the intersection as X3.
Then, OMX3 is equal to −S3 in Eq. (36).

(2) Draw a perpendicular from P2x to the lower side of the
friction cone at P1 (the line going through P1 and X3) and
label its intersection with the y-axis as Y3. Then, OY3 is
equal to −C3 in Eq. (37).

(3) Plot the point (−OMX3, −OY3) and define it as V 3.

Manual drawing step of V 4 (see Fig. 4(d))

(1) Extend the lower side of the friction cone at P2 until
it intersects the x-axis and label the intersection as X4.
Then, OMX4 is equal to −S4 in Eq. (38).

(2) Draw a perpendicular from P1x to the lower side of the
friction cone at P2 (the line going through P2 and X4) and
label its intersection with the y-axis as Y4. Then, OY4 is
equal to −C4 in Eq. (39).

(3) Plot the point (−OMX4, −OY4) and define it as V 4.
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The proof of the equalities OMXn = −Sn and OYn =
−Cn(n = 1, . . . , 4) will be shown in Appendix.

Outside extraction of four circles
After that, draw the circles whose diameters are V n (n =

1, . . . , 4) respectively, and extract the outside of these circles.
The final diagram is illustrated in Fig. 5. This diagram is
drawable with compass and ruler without scales.

4. Examples

4.1. Validity of manual drawing
In order to verify the validity of the manually drawn
diagram, we examine a typical example, a circular object
grasp, comparing drawings done by hand with plots
done by computer. Parameters are P1 = (

√
3/2, 1/2), P2 =

(−√
3/2, 1/2), φ1 = φ2 = π/3, ξ1 = π/4, ξ2 = π/3. The

results are shown in Fig. 6, where 6(a) is drawn according
to our method and 6(b) is the result of computer calculation.
The two figures are identical, indicating that our method is
valid.

4.2. Variety of the diagram in shape
Next, we examine the variation of the diagram in shape
using a rectangular object grasp by changing the position
of the contact points and friction coefficients. Three cases
are drawn in Fig. 7. Parameters are set as shown in Table I.
The directions of vectors V 3 and V 4 are switched in case (a)
and case (b). In case (c), both V 3 and V 4 face to the right.

5. Discussion
The internal force required to create a statically stable
grasp changes with respect to the direction of the external

V1

V2

p1
p2

Friction cone

Object

V4

V3

k1

k2

k3 k4

(a) Manual draw.

(b) Computer plot.

Fig. 6. (Colour online) Minimum internal force for grasping a
circular object. (a) Manual draw; (b) computer plot.

force. The relative magnitude of the internal forces can be
illustrated in a polar coordinate system, where the orientation
corresponds to the external force direction. The actual
magnitude of the internal force is proportional to that of
the external force as well as the scale of the grasped object.
Therefore, our proposed method provides the normalized
forces in the object coordinate system. The actual value is
obtained using Eq. (17) on the basis of magnitude of the
external force, distance between the two contact points, and
a value from the graph, specifically, the distance from the
origin to a point on the graph in the direction of the external
force.

The outline of the diagram is almost completely
determined by the location of two friction cones. To clarify,
let us take a typical example where 0 < φi < π/2, i.e., the
CoM of the object is inward with respect to the object’s
surface. First, note that the intersection point of the circles
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Fig. 7. Several shapes of internal force diagram in rectangular object
grasp.

Table I. Parameters in rectangular object grasp.

P1 φ1 μ1 P2 φ2 μ2

(a) (2, 1) π/2 1.0 (−2, 1) π/2 1.2
(b) (2, 3) π/2 1.0 (−2, 3) π/2 1.2
(c) (2, 2) π/2 0.5 (−2, 2) π/2 1.4

and the intersection point of the lateral surfaces (edges in
2D grasp) of the friction cones are located on the same line,
which also passes through the origin.15 Next, we note that the
contact point conditions π/2 < φi + ξi < π limit the vectors
V 1 and V 2 within the region y < 0, and V 1 is located to the
left of V 2. Regarding V 3 and V 4, the position of the point
OM is critical (see Fig. 8): If OM is included in both friction
cones, V 3 is in the region x < 0, while V 4 is in the region
x > 0 (Fig. 8(a); Figs. 6 and 7(a) correspond to this case);
if OM is excluded from both friction cones, V 3 is in the
region x > 0, while V 4 is in the region x < 0 (Fig. 8(b)
whose example is Fig. 7(b)); otherwise, both V 3 and V 4 are
in the same region x > 0 or x < 0 (Fig. 8(c) demonstrated by
Figs. 5, 7(c), and 8(d)). Several cases should be considered
for generalizing such diagram characteristics; however, we
leave this for future study.

Now returning to consider the problem of determining the
object orientation, recall that the diagram that we proposed in
Section 3.1, i.e., the internal force diagram, represents forces
in the object coordinate frame. Thus, if we set the magnitude
of the external force as the weight of object and direction of
the external force as downward (and the object orientation
changes), then the result demonstrates the necessary internal
force for this object orientation. If the internal force is set
to be greater than the largest value of |V n|, (n = 1, 2, 3, 4),
the object is always stably grasped without slipping for any
object orientation. This value is critical for creating a robust
grasp.

6. Conclusion
In this paper, we have proposed a method to graphically
express the minimum internal force required to grasp a
2D object with two points under external forces. A polar
coordinate system is introduced: The orientation in the polar
coordinate system represents the external force direction,
while the distance from the origin represents the magnitude
of the internal force required to resist the external force
exerted in the corresponding direction. Based on the friction
cone configuration, i.e., position, orientation, and apex angle,
the diagram is manually drawn using only a ruler and
compass. The validity of the manual drawing method has
been confirmed by comparing it with computer-generated
plots. The internal force diagram allows someone to visually
understand the necessary internal force that depends on the
direction of the external force, and whether the direction is
easy or difficult for grasping, and how much internal force
is required to provide a robust grasp. Such an understanding
is useful and important for robot design. Extension of this
method to 3D grasping will be studied in future.
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Fig. 8. Direction of V 3 and V 4 that depends on the spatial relation between friction cones and OM .

Appendix

Relation between Fint and k

Let the element of FN in Eq. (15) is

FN = [fN1 fN2 fN3 fN3 ]T . (A1)

Then, the component orthogonal to FT is written by kFN =
[ kfN1 kfN2 kfN3 kfN3 ]T , thus the magnitude of the internal
force Fint becomes

Fint = k

√
f 2

N1 + f 2
N2 = k

√
f 2

N3 + f 2
N4. (A2)

Substituting fN1, fN2, fN3, and fN4 by the each element of
Eq. (15), we can obtain

Fint = k · Fe

x1 + x2

√
s2 + c2 = k · Fe

x1 + x2
, (A3)

i.e., relation (17).

Proof of OMXn = −Sn and OYn = −Cn

Here, the case n = 1 is shown since the others are the same as
this case. See Fig. 4(a). Notice that angles marked by double
curved lines in Fig. 4(a) have the same amount, and let it be
γ . Using this γ , we can describe P1xX1 and OY1 as

P1xX1 = P1P1x tan γ, (A4)

OY1 = OP2x tan γ. (A5)

Here, note that γ = π − (φ1 + ξ1), so

tan γ = tan(π − (φ1 + ξ1)) = − tan(φ1 + ξ1). (A6)

Thus, we obtain

OMX1 = OMP1x + P1xX1

= x1 + x2

2
+ P1P1x tan γ

= x1 + x2

2
+ y · (− tan(φ1 + ξ1)) = −S1, (A7)

OY1 = OP2x tan γ

= x2 · (− tan(φ1 + ξ1)) = −C1. (A8)
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