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Abstract—This paper reports a new mechanism of a wheeled
robot moving by the single actuator. This mechanism is inspired
by the two-wheeled skateboard, or snakeboard. There, the control
inputs are usually considered as the following three: the steering
angles of the front and the rear wheels, and the torque for
the rotor rotation. To propel a snakeboard with the smaller
number of actuators, two steering orientations of the wheels are
coupled each other at first so as to rotate in the same amount
to the opposite direction synchronously. Next, the rotation of the
steering orientations are connected to the rotor via the torque
limiter. In addition, the stoppers are introduced to restrict and
to maintain the steering orientation of the wheels. Curving the
path of the robot with this mechanism to the side, the position-
based control of the rotor with a drifting sine wave reference is
newly proposed. The behaviors according to the control law as
well as the effect of this mechanism are confirmed by a robot
we construct. Consequently, some curving motion with different
curvature are demonstrated. Finally, a principle of the curving
motion is discussed based on the theoretical and experimental
insights.

Index Terms—mobile robot, snakeboard, single actuator, curv-
ing motion, torque limiter

I. INTRODUCTION

The mobility of robots enlarges their workspace. One

method to provide the mobility with the robots is to newly

add some actuators. However, it is not always feasible from

the aspect of the robot structure, the packaging and the cost.

An alternative manner can be to place a robot on a kind of

car with passive wheels and then propel the car by means of

the degrees of freedom of motion of the robot itself on it: It

will not require additional motors.

Such a progression is observed in the human maneuvering

using a two-wheel skateboard or a snakeboad. To restrict the

moving direction, the boarder adjusts the orientation of the

passive wheels by giving the torsion to the board, and then

twists the upper body, which produces the yaw moment to the

board resulting in the driving force. The propulsion mechanism

of two-wheel skateboard was investigated in detail in [1]. We

also constructed its mathematical model and confirmed by the

numerical simulations that sinusoidal yaw moment as well as

the sinusoidal deviation of the wheel’s orientations can propel

the board [2]. However, we did not establish a method to

control the moving direction, i.e., to make the turn or curve

motion of the board.

The snakeboard was discussed in many studies from the

control point of view [3]–[6]. In particular, a study by S.

Iannitti et al. [7] kinematically calculated the deviation of

the snakeboard motion in relation to the sway angle of the

head and applied it to its path planning. Actually, a part of

a control method proposed in this paper is the same as [7].

However, our control method didn’t work well in the real robot

control. Thus, we will newly propose a control law using the

drifting sine wave in this paper. In addition, another important

point in this paper is that we propose a robotic mechanism

that achieves the snakeboard-specific movement only by the

single actuator. There, the torque limiter and wheel-steering

stopper are key items of our mechanism design. We will

present this mechanism with its control method, and show

some experimental results by this robot.

II. MECHANICAL DESIGN

A. Modeling

Although our study started with a two-wheeled skateboard

[2], the snakeboard model in the 2D space is introduced as

an equivalent model for considering its propulsion principle.

To focus on the propulsion, the lateral balance in the original

two-wheeled skateboard is assumed to be always being kept.

Namely, we do not consider the lateral balance here. In

this snakeboard model, the steering direction of the front

and rear wheels as well as the yaw moment the boarder

produces is regarded as the control inputs. Figure 1 illustrates

a mathematical model we utilize for the analysis.

B. Concept

A control law for this model will be proposed in the section

III. The outline of the control is almost as follows: Adjust

the steering angle of the passive wheels symmetrically in the

front and in the rear, i.e., change the orientation with the same

magnitude in the opposite direction to each other. Then, apply

the yaw moment by rotating the rotor with keeping the wheel

direction. Next, reverse the wheel direction, keep them, and

apply yaw moment in the reverse direction by returning the

rotor. Just repeat these processes again and again.

To Realize the snakeboard mechanism, S. Iannitti et al. [7]

designed the robot by three motors: two of them change the
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steering angle of the front and rear wheels respectively, and

the rest one drives a rotor to gain the yaw moment. We attempt

to reduce the number of motors here. To do that, it will require

some mechanical devices. If the change of the steering angle

is restricted to be symmetrical, two coupled gears with the

same number of the teeth can realize it by rotating them in

anti-phase. Rather a big problem is how to drive the wheel

steering and the rotor simultaneously.

From the analysis in the section III-A, we will find that

the magnitude of the steering angle alternations does not have

to be variable to move in the two dimensional space. This

finding allows us to mechanically control the steering angle

of the wheels by means of the stoppers restricting its movable

range.

However, the stoppers will limit the rotor rotation at the

same time if we connect them directly: this problem will

be solved by disconnecting the transmission of the force to

the steering rotation while the stoppers are working. The

torque limiter is introduced to play this important role between

the rotor and the steering mechanism. It consists of two

parts and serves as a safety clutch. Normally these two parts

are mechanically connected. However, when large torque is

exerted, the slippage occurs on their connecting surface. This is

why large torque is not transmitted through the torque limiter.

C. Mechanism

We thought up a mechanism to realize our idea in the

previous section. Figure 2 illustrates our concept.

As shown in Fig. 2 (a), the upper part of the torque limiter

is connected to motors, while the lower part is connected to

the steering mechanism containing gear A, B and C.

When the gear A rotates, it drives the gear B and then the

gear C. If the gear B and gear C have the same radius with

the same number of the teeth, the amount of deviation are

equal in the opposite direction. Namely, their rotations become

symmetrical. Fixing the front and rear wheels to the gear B

and gear C, respectively, the steering angles of two wheels

can be controlled symmetrically by means of the one DoF of

motion, i.e., the gear A rotation.

The sole motor on the robot rotates not only this torque

limiter but also the rotor simultaneously. The rotor rotation

produces the reaction force that propels the board. Thus, the

rotor motion should not be restricted for the purpose of the

propelling force generation. However, in our control method

that will be mentioned in the section III, the steering angle

must be kept constant during the period determined by the

control law. Namely, the maintenance of the wheel direction
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Fig. 1. Snakeboard model.

limits the angle of the sole motor: That also affects the

important rotor function since the motor drives both the rotor

and the steering angles.
This problem will be solved by the combination of the

torque limiter and the stoppers. As shown in Fig. 2 (a), the

stoppers are set up to restrict the rotation of the lower part.

A bar attached on the lower part prevents the lower part from

rotating beyond these stoppers.
As depicted in Fig. 2(b), the steering mechanism rotates

with the rotor as long as the bar does not contact to the stopper.

It implies that the torque limiter is not working and the driving

force is transmitted to the steering mechanism.
Then, consider the case where the bar contact to the stopper,

as shown in Fig. 2 (c). The stopper stops the rotation of

the lower part of the torque limiter. At this moment, the

torque limiter starts working: its upper part is able to rotate

even if the lower parts stop rotating. Therefore, the rotor is

able to produce the propelling force against the board even

if the wheel directions are maintained. Note here that the

stoppers’ position mechanically determines the magnitude of

the steering angle to be maintained.

D. Design
We designed the snakeboard robot to realize our concept in

the previous section. Figure 3 shows an overview of the robot

on the left, and the stopper mechanism on the right.
To reduce the robot height, the rotor axis is separated from

the axis of the wheel steering mechanism: they are connected

by the same-size gears at the upper part. The robot has 270mm

in height, 600mm in length and 3.8kg in weight. Its photo is

shown in Fig. 4. The side supports with the omni-directional

wheels prevent the robot from turning over to the lateral

direction.

III. CURVING CONTROL BY A DRIFTING-SINE-WAVE

ROTOR MOTION

A. Dynamics and velocity constraints
To discuss a control of the robot, the model in Fig. 1 is

considered throughout this section. The motion equations with

non-holonomic velocity constraint is presented in Appendix A-

I. In particular, from the relation (21) and (23), the following

equations hold

Ẋ = −V sin θ (1)

Ẏ = V cos θ (2)

θ̇ = V
tanα

�
(3)

where (X , Y ) denotes the CoM position of the board, θ is

board orientation from the Y axis, V denotes the speed of

the robot, and � is the distance from the CoM to the wheel

position.
For this wheeled robot, we first propose the switching time

control of steering direction. Then, we arrange it to apply to

the one-actuator robot.

B. Switching time control of steering angle
In a control law we propose here, the wheel direction α

is switched between αd and −αd every determined duration

under the constant robot velocity Vd.

α =

⎧⎪⎪⎨
⎪⎪⎩

αd (0 < t ≤ Ta(= T1))
−αd (T1 < t ≤ T1 + Tb(= T2))
−αd (T2 < t ≤ T2 + Tb(= T3))
αd (T3 < t ≤ T3 + Ta(= T4))

(4)
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A series of those switches is regarded as one set of control

inputs. Thus, the single control period is T4 = 2Ta + 2Tb.

Starting from (X,Y ) = (0, 0) and θ = 0, the position and

direction of the board after one period T4 is given as follows:

X(T4) = −Rc(1− cosωcT4) (5)

Y (T4) = Rc sinωcT4 (6)

θ(T4) = ωcT4 (7)

where

Rc =
�

tanαd

(
2 sinωdTb

sinωd(Ta − Tb)
+ 1

)
(8)

ωc = ωd
(Ta − Tb)

(Ta + Tb)
(9)

ωd = Vd
tanαd

�
(10)

The deviation of these equations is described in Appendix A-

II.

When we select Ta and Tb so as to satisfy Ta > Tb, Rc

given by (8) becomes positive. This indicates that the center

of the circle orbit comes to the left hand side, and that the

board turns to the left with the radius Rc. The right turn will

happen in the same way if we select as Ta < Tb.

When we set as Ta = Tb, the skateboard goes straight with

undulating. The traveling distance are given as

Y (T4) =
4�

tanαd
sin

ω

4
T4 (11)

C. Position control to drifting sine wave reference

1) An idea: The switching time control in the above section

needs the constant board velocity achieved by e.g., a method in

section A-III. However, in some pilot experiments, the velocity

had fluctuated because the velocity control was indirect based

on the counter force of the rotor with a large inertia and thus

low response. This is why we explored another method that

will be easily applicable.

Although our later experiments implied that our hypothesis

below did not seem correct, we initially considered that the key

factor to the curving motion existed in producing the difference

in the duration between the steering direction +αd and −αd.

Actually, the constant velocity is important to calculate the

exact position. In our opinion, however, the velocity will be

allowed to fluctuate if the purpose is only the achievement of

the curved motions. Based on this idea, we aimed at adopting

a manageable and popular signal, a sine wave, to achieve the

curved motion.
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Consider the sine wave velocity profile for the rotor, as

shown in the top of Fig. 5 (a). As the rotor and the wheel

direction are mechanically connected in the ratio 1:1, the

complete switch to the angle ±αd requires more than or equal

to 2αd deviations for the rotor movement. This amount is

illustrated by the symmetrical regions surrounded by the sine

wave and the horizontal axis. In the period outside of these

regions, the stopper restricts the steering direction, though

the rotor is able to rotate alone owing to the torque limiter.

Therefore, the steering direction α is supposed to change as

depicted at the bottom of the Fig. 5 (a): In this case, the

duration of each steering direction are exactly the same.

Now, let us add the positive offset to this sine wave velocity

profile, as shown in the top of the Fig. 5 (b). As the oscillation

center is not zero, the regions with the area 2αd becomes

asymmetrical. In addition, the increasing zero-crossing moves

to the left, while the decreasing zero-crossing moves to the

right. This produces the difference in the duration for the

steering angle +αd and −αd as shown in the bottom of the

Fig. 5 (b). We expected this difference to produce the curved

motion of the robot.
2) Implementation: Because we can detect only the angle

of the rotor rotation, we introduce the position control of the

rotor angle. Then, the sine wave velocity profile with some

offset is integrated to obtain its desired position.

φd = A sin 2πft+ ρt (12)

Here, φd is the desired rotor angle, A and f respectively

determine the amplitude and the frequency of integrated sine

wave velocity profile with some offset, the drifting sine wave,

and ρ is a parameter for the drifting speed which is expected

to change the curvature of the traveling orbit of the robot. The

PD control is adopted for the position control:

τ = −Kdφ̇+Kp(φd − φ) (13)

where φ is the rotor angle detected by the rotary encoder

installed in the servo-motor. Kd and Kp are the feedback

gains.

IV. EXPERIMENTS AND RESULTS

The object of this experiment is to confirm the generation

of the curved motion by the control law (12) and (13). Our

prediction is that robot goes straight at ρ = 0 and turn largely

with larger ρ.

The robot made in the section II is controlled by the position

control against the desired trajectory given as the drifting sine

wave in the previous section. The controller output the torque

every 1ms after the torque computation.

To obtain the position of the robot, a motion capture system

is introduced. The robot is initially placed at the origin of

the coordinate frame defined to the workspace to face to the

positive direction of the x axis. From this same state, the robot

is driven by the control law (12) and (13) in the different ρ
values from 0 deg to 100 deg with 10 deg intervals. Parameters

are set as Kd = 0, Kp = 1, A = 50 deg, f = 0.8 Hz. αd

is mechanically determined as 40 deg. The duration of all the

experiment is 10 s.

Three experiments are conducted for each ρ value. The

intermediate orbit of three is depicted for each ρ in Fig. 6.

Other experiments confirmed that the negative ρ curves the

robot in the opposite direction to the positive ρ.

The last experiments attempted to bring the robot to the

goal position by the feedback of the relative direction angle to

the goal, namely, ρ is updated on-line by the relative direction

angle. The robot adjusted the magnitude of its curved motion

and finally reached the goal position, as shown in Fig. 7.

V. DISCUSSION AND CONCLUDING REMARKS

As we expected, ρ = 0 produced the straight line and the

larger ρ curved the orbit to the left more. Rather, however, the

robot tends to go straight at ρ smaller than 40 deg/s. One of the

reasons might be that the velocity of the robot is far from being

constant although we assumed some fluctuation: According to

the observation of the robot movements, the robot obtains the

reaction force from the rotor only in the short time before

the rotor changes the rotational direction: the chance of the

acceleration seems to be restricted to this moment. In other

words, the velocity control is hard to achieve. It means that,

even if the steering direction is maintained for a long time,

it never prolong the moving distance to the steered direction

which would have been possible under the constant velocity.

This will be a reason why the robot goes straight at the small

ρ.

On the contrary, the robot curves for large ρ. This is the

same as we expected, but the principle of the curving motion

appears to be different from our expectation. We predicted the

time course of the steering direction in Fig. 8 when the robot

is curving with large ρ. Then, the steering direction does not

reach −αd, although it reaches +α in the opposite direction.

Such an unbalance in the steering angle will cause the curving

motion.

If the above consideration is true, we will be able to estimate

the critical value between two mode, Fig. 5 and Fig. 8. Note

here that the coupling ratio of the rotor and the steering angle

is 1 : 1. If there are no drifts, the steering angle given by

(12) will vary in 2A during the half period 1/(2f). If the

drift exists, its effect reaches ρ/(2f) in the same half period
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1/(2f). Thus, the complete switching of the steering direction

requires the relation 2A − ρ/(2f) ≥ 2αd. In summary, if ρ
satisfies

ρ ≤ 4(A− αd)f(= ρe) (14)

the steering angle completely varies from αd to −αd.

In the case of the experiments in Fig. 6, we can estimate

ρe = 32 deg/s from A = 50 deg, αd = 40 deg, f = 0.8 Hz.

We can observe that, for ρ > ρe, the robot curves as the mode

in Fig. 8; For ρ < ρe, the robot does not curve so much. The

consistence between calculation and experiment may imply the

correctness of our consideration, but we have not checked the

actual deviation of the steering angle yet because no sensors

are installed for it. We should confirm it in our future work

by building in an angle sensor such as rotary-encoder to the

robot.

APPENDIX

A-I. MOTION EQUATION WITH VELOCITY CONSTRAINTS

The mechanical structure of the board in Fig. 1 is as-

sumed symmetrical to the front-rear direction. In addition,

it is assumed that the steering angles satisfy the relation

α1 = −α2 = α as is the same as the robot we designed.

Then, the motion equation becomes

MQ̈ = AT
NFN +AT

FF F + T (15)

Here, M is a inertia matrix given by

M =

⎡
⎣ M 0 0

0 M 0
0 0 I

⎤
⎦ (16)

where M is a mass of the skateboard and I is an inertial

moment of the skateboard around the center of mass. Q, FN ,

F F , T are vectors defined by

Q =
[
X Y θ

]T
(17)

FN =
[
FN1 FN2

]T
(18)

F F =
[
FF1 FF2

]T
(19)

T =
[
0 0 τ

]T
(20)

where, FNi is constraint force in the wheel-axis direction, FFi

is viscous friction force in the steering direction, and i (=1

or 2) specifies the front or rear wheel. AF , AN are Jacobian

matrices that relate the velocity of the board state Q̇ with each

component of the wheels’ velocities (ẋw
i , ẏwi ). These matrices

are defined later in (25) and (22), respectively.

It is assumed that two wheels do not slip in the wheel

axis direction. This assumption is expressed as the velocity

constraints:

ANQ̇ = 0 (21)

AN =
[

cos(θ + α) sin(θ + α) −� cosα
cos(θ − α) sin(θ − α) � cosα

]
(22)

As for the wheel velocity vwi , the following relation holds.

−AF Q̇ = V w (23)

where

V w =
[
vw1 vw2

]
(24)

AF =
[

sin(θ + α) − cos(θ + α) −� sinα
sin(θ − α) − cos(θ − α) � sinα

]
(25)

Assuming the viscous friction is given as

FF
i = Biv

w
i (26)

we finally obtain the following dynamics

MQ̈−AT
NFN = −AT

FBAF Q̇+ T (27)

where B = diag[B1, B2] is the viscous coefficient at each

wheel. With the time derivative of (21), the motion equation

of the board with velocity constrains become

[
M −AT

N

−AN 0

] [
Q̈
FN

]
=

[ −AT
FBAF

ȦN

]
Q̇+

[
T
0

]

(28)



A-II. MOTION BY SWITCHING TIME CONTROL OF THE

STEERING ANGLE

When the speed of the robot V and the steering angle α are

kept to the constant desired value Vd and αd respectively, the

right hand side of (3) becomes constant value, ωd. Then, we

can integrate (3) easily, which gives the following equation:

θ(t) = ωdt (29)

Integrating (1), (2) and (3) from t = 0 to t = T with the initial

condition X(0) = Y (0) = θ(0) = 0, we obtain

X(T ) = − �

tanαd
{1− cosωdT} (30)

Y (T ) =
�

tanαd
sinωdT (31)

θ(T ) = Vd
tanαd

�
T = ωdT (32)

Based on these results, the position of the board at T1, T2,

T3 and T4 are given as:

X(T1) =
�

tanαd
cosωTa (33)

Y (T1) =
�

tanαd
sinωTa (34)

X(T3) = X(T1) +
�

tanαd
{(1− cos 2ωTb) cosωTa

− sin 2ωTb sinωTa}
Y (T3) = Y (T1) +

�

tanαd
{(1− cos 2ωTb) sinωTa

+sin 2ωTb cosωTa} (35)

X(T4) = X(T3)

+
�

tanαd
{−(1− cosωTa) cosω(Ta − 2Tb)

− sinωTa sinω(Ta − 2Tb)} (36)

Y (T4) = Y (T3)

+
�

tanαd
{−(1− cosωTa) sinω(Ta − 2Tb)

+ sinωTa cosω(Ta − 2Tb)} (37)

After some calculations, we finally obtain (5), (6) and (7). If

a series of inputs (4) is repeated n times, the board potion and

orientation becomes

X(nT4) = −Rc(1− cosnωcT4) (38)

Y (nT4) = Rc sinnωcT4 (39)

θ(nT4) = nωcT4 (40)

Eliminating T4 using (38) and (39), the equation of the circle

orbit are obtained

(X(nT4) +Rc)
2 + Y (nT4)

2 = R2
c (41)

whose center is located at (−Rc, 0) and whose radius is |Rc|.
A-III. VELOCITY CONTROL

In order to apply (30), (31) and (32), its velocity has to be

keep to Vd. For this velocity control, we utilize the torque τ .

The V is expressed as follows using (3):

V =
�

tanαd
θ̇ (42)

Its time-derivative is

V̇ =
�

tanαd
θ̈ (43)

On the other hand, from (28), θ̈ can be written with τ as

follows:

θ̈ = N(Q, Q̇) +M(Q)τ (44)

Here, N and M are the scalar functions of Q and Q̇.

Substituting (43) with (44), we have

V̇ =
�

tanαd
(N(Q, Q̇) +M(Q)τ) (45)

The right hand side of the above equation should be K(Vd −
V ), because the time evolution of V becomes

V̇ = K(Vd − V ) (46)

and thus

V (t) = Vd − V (0) exp(−Kt)+ → Vd (47)

Here, K is a positive constant corresponding to the control

gain. Therefore, the following equation must be satisfied:

�

tanαd
(N(Q, Q̇) +M(Q)τ) = K(Vd − V ) (48)

Solving it to τ , we finally obtain the control law:

τ =
tanαd

�
· K(Vd − V )

M
− N

M
(49)

This ensures that V converges to and is maintained to Vd .
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