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A B S T R A C T

Although reducing the number of actuators in mobile robots contributes to weight saving and results in high
efficiency or damage reduction in the event of an accident such as falling over, ideally it should not degrade the
robot’s performance and functionality. In this study, we propose a new biped mechanism that reduces the
number of actuators in a robot without sacrificing its ability to walk adaptively on slopes. We address two issues
from both the mechanical and the control viewpoints that are required to achieve straight walking on slopes. For
the biped mechanism, we studied the required degrees of freedom of the biped robot and then proposed an
actuation mechanism for the hip joint structure. Subsequently, we designed and constructed a biped robot with
six actuators, including two actuators for each ankle, no knees, and two actuators for the hip joint structure. For
control, we applied feedback from the center of pressure (CoP) of the ground reaction forces in addition to
gravity compensation and discussed the stability of CoP movement. Experiments conducted using the con-
structed biped robot with fewer actuators demonstrated the viability of the proposed mechanism in terms of
walking on slopes and the effectiveness of the proposed control concept, which introduces adaptability to the
biped robot.

1. Introduction

Biped robots have the advantage of simpler moving mechanisms
than multi-legged robots, allowing us to decrease the number of in-
dependently movable joints, that is, the degrees of freedom (DoFs) of
motion. The low-DoF mechanism, in other words, the mechanism with
only a few actuators, is important for realizing biped robots. This me-
chanism allows us to reduce robot weight, which enhances the robot’s
walking efficiency and reduces the risk of damage in the event of a fall:
if the robots are lightweight, the damage to instruments or humans
around them, as well as to the robots themselves, is reduced.

Biped robots are essentially unstable systems. Their motion always
involves the possibility of falling over. Thus, if a biped robot can
adaptively maintain its balance, for example, even on a floor with an
uneven gradient, then the areas where robots can be used would in-
crease dramatically. However, such adaptability is generally accom-
panied by a variety of motions that normally require multiple DoFs.
Thus, the challenge is to achieve adaptive locomotion with fewer ac-
tuators. To tackle this problem, mechanical design and control strategy
should be considered in a complementary manner.

In this study, we attempt to design a biped mechanism with fewer
actuators that can adaptively walk on a slope. The minimum DoF of a
biped mechanism has already been discussed for various real-world
situations [1], and a seven-DoF biped robot that can change direction
was proposed [2]. Passive walking [3], which does not require actua-
tors or power supplies, is another approach to achieving the goal of
efficiency enhancement, that is, weight reduction due to a low DoF.
Recently, an actuated dynamic walk based on passive walking [4,5] has
been proposed. Although the gait in passive walking changes with the
slope gradient via a simple mechanism, this adaptation is completely
mechanical. A new concept for motor control accompanied by learning
is required to achieve any kind of adaptation. For this control aspect,
the most important concept is the zero-moment point (ZMP) [6,7]; To
adapt to environmental changes, online planning of the center of mass
(CoM) trajectory [8], footsteps [9], and angular momentum [10] is
considered in combination with the ZMP criterion. Moreover, the center
of pressure (CoP) is used to realize human-like walking [11]. Com-
pliance control is an effective method [12] for locomotion in which the
robot maintains contact with the ground. Environmental changes are
sometimes treated as external force [13,14] or uneven terrain [15],
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where the robot’s behaviors are evaluated under the modeled condi-
tions. By performing a robot demonstration and mathematical analysis,
some studies have aimed to ensure stability of the control result by
means of linearized analysis [16], return (Poincaré) maps [17,18] and
nonlinear dynamics [19]. Our approach is different in that we aim to
ensure stability of the body balance based on CoP feedback.

By limiting the problem to straight walking on a constant slope, in
this study, we address two issues: (1) a mechanism of biped robots with
a small number of actuators from the mechanical viewpoint and (2) the
achievement of adaptive behavior from the control viewpoint.
Moreover, in this study, we propose a new hip joint mechanism that
achieves not only alternative leg swings but also lateral sway while
keeping the two legs parallel, and a control method that adapts a six-
DoF robot to unknown external forces by adjusting the posture, re-
sulting in adaptive biped walking on a slope. In Section 2, we discuss
the DoFs required to achieve slope locomotion and present a novel
design for the hip joint with fewer actuators [20]. Next, in Section 3, we
introduce a balance control method to adapt to changes in the slope
gradient. We have already proposed a control scheme based on CoP
feedback [21]. To improve the response speed, we introduced gravity
compensation [22]. In this study, we present a scheme to achieve sta-
bility based on CoP feedback control with gravity compensation by
proving the controllability of a linearized system in the stationary state
because the control law is basically constructed as the state feedback of
that linearized system. Section 4 is devoted to robot experiments, and
Section 5 concludes the paper.

2. Design of a biped robot with a small number of actuators

2.1. Minimal DoF consideration

The target behavior of our biped robot is straight walking on a
constant slope of unknown gradient. First, we discuss the required
number of DoFs that will allow the biped robot to walk on a uniform
slope.

Biped robots move by repeating support leg exchanges between
their right and left legs. To adapt to a slope in a single-support phase, an
ankle joint needs to have two DoFs: pitch and roll. Here yaw rotation is
not considered.

While walking, both legs are swung alternately in the anterior-
posterior direction. This motion can be executed with one DoF if the
legs are swung symmetrically within the sagittal plane. Simultaneously,
the weight of the robot must be moved in the lateral direction to switch
the support leg before lifting and swinging the other leg. Introducing a
constraint that the legs must be parallel to each other, which can be
achieved with one DoF, means that the ankle joints must then move in a
coordinated manner. Mechanically integrating these types of sagittal
and frontal plane movements at the hip joint structure limits the
number of required DoFs to two.

In summary, a bipedal robot with six DoFs, with two in each of the

ankles and two in the hip joint structure, will be able to adaptively walk
on a regular slope.

2.2. New reduced DoF structure for the hip joint

The key to the above ideas about a robot with a reduced number of
DoFs is the realization of a hip joint structure that allows simultaneous
alternate leg swing and lateral sway.

Initially, let us consider the mechanism for alternate leg swing in the
anterior-posterior direction. To realize this motion, we introduced dif-
ferential gear functions, which are shown on the left in Fig. 1. Assuming
that the leg segments are fixed to each side gear, if a central pinion gear
drives the two side gears, the side gear deviates equally in the opposite
direction. Thus, oscillation of the central gear leads to alternate leg
swing back and forth on both sides.

Lateral sway requires a gap between the two legs to prevent them
from interfering with each other. A large central gear can be used to
create this wide gap, but large gears are generally heavy. Therefore, we
synchronized the function of the central gear with two coupled gears
that are connected mechanically, for example, by a timing belt, as
shown on the right in Fig. 1.

To achieve lateral sway, we introduced U-shaped bases, as shown
on the right in Fig. 1. The leg segment was fixed to the side-beveled
gear in the base. Each U-shaped base can achieve roll rotations, but
these rotations do not block the leg swing in the anterior-posterior
direction. While coupling the roll rotations of two U-shaped bases, for
example, by using a timing belt, as shown in Fig. 2, the two legs
were always maintained parallel to each other. This constraint re-
sulted in lateral sway when the legs contacted the ground. To achieve
roll rotation coupling, another axis was added in the opposite direc-
tion to support the U-shaped base, sharing the rotation axis for the leg-
swing motion. This sharing of the rotation axis not only allowed ro-
tation of the two synchronized central gears without interference but
also distributed the body weight across the two axes at the back and
front.

Because of these mechanisms, the robot can lift the leg opposite to
the body slant and then swing this leg while keeping it parallel to the
other leg in the front view.

2.3. Robot construction

Fig. 3 shows the biped robot that we constructed, which contains
the hip joint structure described in this section. Its dimensions are as
follows: height = 290mm, width = 270mm, and weight = 4.12 kg
(with six servo motors). Its feet measured 160mm in length.

After devising the hip joint structure, we focused on the motor
configuration to prevent mechanical interference between the robot’s
links. Two motors were installed on this hip joint structure for its ac-
tuation to balance the robot’s weight symmetrically. Timing belts were
used to transmit the driving force from the motor axis to the hip joint

Fig. 1. Leg-swing mechanism.
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DoFs, whose tension reduced the backlash between pulleys attached at
the motor and hip joint axes.

The sagittal DoFs of the ankle joint were actuated by the motor
placed in the middle of the leg, whereas the frontal ones were driven by
the motor in the foot segment.

The same motors (Maxon RE25) were used for the actuation of all
DoFs; the reduction gear ratios differed among the hip joints (111:1),
ankle pitch (28:1), and roll rotations (66:1).

3. Biped control based on CoP feedback

3.1. Concept

The key to realizing biped control is the ZMP-based method. The
motion represented by the positional trajectory of joint angles or the
CoM of a few links was planned initially to ensure that the ZMP cal-
culated using the gravitational and inertial forces remained inside the
support polygon, which is the convex hull that includes all contact
points with the ground. Then, positional feedback control was applied
to track this trajectory. This ensured zero turnover of the robot in the
sense that the foot segment remained steady without rotating around its
edge. This method is quite powerful and effective; however, it does not
monitor the actual ZMP position, which does not always remain within
the support polygon if the parameters of the robot’s environment, such
as the gradient of the ground, change.

To deal with environmental variations, additional information
should be added to the control law. For example, we focused on the

ground reaction forces [21]. In fact, the ZMP is equivalent to the CoP of
the ground reaction forces [23], which means that the ground reaction
forces contain useful information regarding balance. According to our
idea for adapting to environmental changes, although the joints or CoM
trajectories vary with the slope angles, the trajectory of the CoP posi-
tion does not change during locomotion, especially in the lateral di-
rection, as illustrated in Fig. 4. Because of this invariance, we chose the
CoP trajectory as the control reference. We proposed a balance control
law demonstrating the maintenance of adaptive balance during static
standing [21] and in-place stepping [24]. However, biped walking has
not been realized yet owing to slow response to desired trajectories. The
control law described in the following sections improves upon this as-
pect by adding gravity compensation, as already proposed in a few
papers [25,26].

3.2. CoP control in the double-support phase

3.2.1. Control law
Static balance retention based on CoP feedback along with gravity

compensation was proposed, and its effect was investigated in our
previous work [27]. Here, we extend this concept to CoP tracking
control in the double-support phase. Gravity compensation is in-
troduced into the control scheme without gravity compensation in [24]
to hasten the response.

In the double-support phase, the CoP position moves from beneath
the support leg in the previous single-support phase to the other leg.
This type of CoP movement is realized by using the desired trajectory of
the = ∈P P t( ) ,d d R which sets the desired position as time variant ac-
cording to the stability of the CoP feedback control.

However, in the biped double-support phase, a closed-link structure
is constructed. To describe this action, we consider a non-vertical
constraint path of the CoM for the entire biped robot; a new coordinate
frame is defined whose variable is denoted by ∈ϕ R . Here, let us as-
sume that ϕ uniquely determines all joint angles ∈θ nR of the biped
robot ( =n 4 for the robot constructed in Section 2; see Appendix A and
Appendix B). Then, the deviation of ϕ uniquely defines the amount of
deviation of all the joint angles θ based on the Jacobian matrix

∈ ×J θ( ) ,n 1R according to

= J ϕθ θΔ ( )·Δ . (1)

Now, we define the control law. First, we calculate the generalized
torque ∈τϕ R in the coordinate frame ϕ which requires CoP tracking to
Pd(t).

∫= − + − + − +τ K ϕ K ϕ ϕ K P P dt G gθ˙ ( ) ( ) ( , ),ϕ d p d CoP d CoP (2)

Fig. 2. Reduced-DoF mechanism for lateral motion.

Fig. 3. Overview of the biped robot.

Fig. 4. CoP trajectory on flat and sloped ground.
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where G gθ( , ) is the gravity term in the coordinate frame ϕ. The fol-
lowing equation holds based on the virtual work principle:

=τ J θ τ( ) ,ϕ
T (3)

where τ denotes a generalized force, which is a joint torque vector,
corresponding to the joint angle θ. Finally, we obtain all joint torques
using J θ( ( ))*,T which is the generalized inverse matrix of J θ( )T and is
given by

= J ττ θ( ( ))* .T
ϕ (4)

Because the double-support phase with the large support polygon fa-
cilitates balance retention in comparison with the single-support phase,
the control law may not necessarily require the gravity compensation
term. Analysis without the gravity compensation term has already been
conducted in our previous study [24].

3.2.2. Stationary state
Now, we assume that the robot dynamics has been restricted to the

one-dimensional path ϕ so as to the double-support phase of our robot
constructed in Section 2. Its dynamics is described by

+ + + =M ϕ C G g ξ τθ θ θ θ θ F( ) ¨ ( , ˙ ) ( , ) ( , ) .e ϕ (5)

Here, ∈M θ( ) R is an inertia term, ∈C θ θ( , ˙ ) R is a Coriolis-centrifugal
force, ∈G gθ( , ) R is the gravitational force, and ∈ξ θ F( , )e R is the
effect of an external force ∈Fe

2R exerted on the robot’s CoM. The
derivation is given in the Appendix C. In addition, according to the
equations in the Appendix D, the CoP position is given as

= + +P P τ Q R gθ θ θ θ F( ) ( , ˙ ) ( , , ),CoP ϕ e (6)

where ∈P θ( ) R denotes the effect of τϕ on the CoP position,
∈Q θ θ( , ˙ ) R represents the effect of the Coriolis-centrifugal force, and

∈R gθ F( , , )e R represents the effects of gravity and external force. Then,
control law (2) is applied to these equations.

By introducing a new state variable ∈τ ,CoP R which is defined as

∫= −τ P P dt( ) ,CoP d CoP (7)

we obtain the new dynamics,

= −τ P P˙ ,CoP d CoP (8)

and the state variables are defined as = ∈ϕ ϕ τx [ ˙ ]CoP
T 3R . The sta-

tionary state = ϕ τx [ 0 ] ,CoP
T that is, the equilibrium point, is ob-

tained by solving =x 0˙ . Specifically, from (8), =P PCoP d holds in the
stationary state. Moreover, the control law takes the stationary value,

= − + +τ K ϕ ϕ K τ G gθ( ) ( , )ϕ p d CoP CoP .

3.2.3. Local stability
Next, to examine the local stability of the stationary state x, we

linearize (5) and (8) using (6) around the stationary state x. Namely, we
obtain the dynamics of the error = ϕ ϕ τxΔ [Δ Δ ˙ Δ ]CoP

T by using
= +x x xΔ . Note that the control input can be written as follows:

= +τ τ τΔ ,ϕ ϕ ϕ (9)

= − − − = −τ K ϕ K ϕ K τ K xΔ Δ ˙ Δ Δ Δ ,ϕ d p CoP CoP (10)

=K K K K[ ] .p d CoP
T (11)

Replacing Δτϕ with u, the error dynamics becomes

= +A Bux xΔ ˙ Δ , (12)

where

=
⎡

⎣

⎢
⎢

− ′

′ + ′ + ′

⎤

⎦

⎥
⎥

A ξ J M
P τ P G R J

0 1 0
/ 0 0

( ) 0 0
,

ϕ (13)

Fig. 5. Experiments of CoP tracking in the
double-support phase where the right foot is
placed forward.
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=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B M
P

0
1/ .

(14)

Here, denotes the stationary state and ′ denotes the derivation with
respect to θ. Namely, = ∈J J θ( ) ,nR = ∈M M θ( ) ,R = ∈G G gθ( , ) ,R

= ∈ξ ξ θ F( , ) ,e R = ∈P P θ( ) ,R = ∈R R gθ F( , , ) ,e R ′ = ∈∂
∂

×G G gθ( , ) ,n
θ

1R

′ = ∈∂
∂

×ξ ξ gθ( , ) ,n
θ

1R ′ = ∈∂
∂

×P P θ( ) ,n
θ

1R ′ = ∈∂
∂

×R R gθ F( , , )e
n

θ
1R and

= +τ G ξ .ϕ (15)

The determinant of this controllability matrix Δc becomes

Fig. 6. Comparison of control laws with and without gravity compensation.
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= − ′

′ + ′ + ′

= − ′ + ′ + ′ + ′

= − ∂
∂

+ = − ∂
∂= =

M
M ξ J M

P P τ P G R J M

P ξ P τ P G R J M

M ϕ
P τ R

M ϕ
P

Δ
0 1/ 0

1/ 0 /
0 ( ) /

( ) /

1 · ( ) 1 · .

c

ϕ

ϕ

ϕ CoP
x x x x

2

3

3 3
(16)

Here, ∂
∂

=
Pϕ CoP

x x
denotes deviation of the CoP when the CoM moves

along the one-dimensional path ϕ. This term is supposed to be nonzero
because ϕ is assumed to be non-vertical, which leads to certain CoP
deviations. Accordingly, the controllability matrix has full rank, and
thus the linearized system (12) is controllable.

If the linear system is controllable, the state feedback = −u K xΔ
sets the eigenvalues of dynamics (12) arbitrarily by selecting the coef-
ficient matrix K. Now, u is being defined as − K xΔ because it replaces
Δτϕ given by (10). In conclusion, the stationary state x is stabilized by
selecting K suitably, for example, based on the framework of optimal
control. Although Pd will be time-variant in reality, this local stability
allows the CoP to follow it.

4. Robot experiments

4.1. Setups

The goal of the experiments was to confirm the following two
points: (1) walking ability of the small-DoF robot designed and con-
structed in Section 2 and (2) effectiveness of the balance control with
the CoP feedback proposed in Section 3 for slope walking with adap-
tation to the gradient.

To detect the vertical components of the ground reaction forces,
load cells (KYOWA LMA-A-50N-P) were attached to each corner of the
robot’s square soles; in total, eight load cells were attached. The value
of strain was translated into electrical data and acquired using an
analog-to-digital converter board after amplification. In addition, the
joint angles of the robot were detected using optical encoders that were
included with each motor, and their pulses were counted using counter
boards. These data were processed using a personal computer running a
real-time operating system, and the motor commands corresponding to
the joint torque were output from a digital-to-analog converter board.
Motor drivers received this command and supplied the electric current
required to a direct current servo motor.

4.2. CoP tracking in the double-support phase

To confirm CoP tracking in the double-support phase, the initial
state of the robot was set such that its right foot was placed 4 cm ahead
of its left foot. The desired CoP trajectory was set to sway 4 cm laterally
in 14 s from left to right to left again. Feedback gains were set as
Kd = 0.0005, Kp = 15, and KCoP = 300. The control scheme started 2 s
after the start of the experiments. Three scenarios, horizontal floor, 2°
upward slope, and − ∘2 downward slope, were tested under the same
conditions, that is, no changes in the controller.

The time courses of the CoP are shown along with its desired tra-
jectories in Fig. 5(a)–(c) for each condition. Independent of the slope
angle, similar trajectories were obtained under the three different sce-
narios. This indicates that balance control based on CoP tracking along
with gravity compensation was not affected by environmental condi-
tions represented by external forces such as change in the gravity di-
rection on the slope, as shown in Fig. 4. Fig. 5(d) shows the time course
of the approximate value of the lateral sway angle ϕ with respect to the
normal direction of the slope. This result implies that the posture in the
lateral sway is adjusted automatically with the slope angle.

Next, to demonstrate the effect of the gravity compensation term,
experiments with and without this term were conducted for a simple

lateral movement on a horizontal floor. The biped robot was made to
stand upright at first, and the desired CoP position was moved from the
center (0 m) to 0.02m toward the left (− 0.02 m) in 5 s at 2 s after the
start of the experiments. The feedback gains were set as Kd = 0.0005
and KCoP = 75 with several Kp values of 10, 7.5, 7, 6, and 5.5. Because
the first experiment showed a noisy CoP trajectory, a 5 Hz low-pass
filter was applied for the detection of the ground reaction forces. Three
experiments were conducted for each condition.

The time courses of the CoP trajectories are shown in Fig. 6. For the
same Kp value, rapid responses can be observed for the control law
without gravity compensation: this is because gravity comüÊpensation
is exerted to maintain the upright posture, and thus it does not facilitate
the movement of CoP. For the same reason, improved responses are
obtained for the smaller Kp values. However, these Kp values degrade
the stability of the response. The responses tend to oscillate for small Kp

values without gravity compensation. These facts imply that if Kp is
constant, larger feedback gains can be set to KCoP of the control law
with gravity compensation than those for the control law without it.
Because KCoP controls convergence of the CoP to its desired value,
gravity compensation improves the CoP response by combining the
larger KCoP. In fact, in the experiment in Fig. 5, which shows rapid
tracking, KCoP was set to 300.

Fig. 7. Photos of a biped walk on a slope.
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4.3. Biped walking

We walked our biped robot on 5° upward and downward slopes. The
control law based on the CoP feedback concept was used for balance
control during this experiment. Even though the controller was not
different, that is, the reference trajectory of the CoP and the feedback
gains were the same, the robot could walk on two slopes with different
gradients [22]. Photos of the slope walking experiment are shown in
Fig. 7.

These experiments demonstrate that a robot with a small-DoF hip
structure can accomplish slope walking and that the control strategy
based on the CoP feedback shown in Fig. 4 works effectively.

5. Conclusion

To reduce the number of actuators for reducing robot weight, we
proposed a method for reducing the number of DoFs of a biped robot
without affecting its adaptability. For maintaining adaptability, we fo-
cused on changes in the ground’s gradient, and the target motion of the
robot was to achieve straight walking on flat slopes of unknown gra-
dient. To achieve adaptive walking on slopes with a small-DoF robot, a
few challenges needed to be addressed from the mechanical and control
perspectives.

From the mechanical viewpoint, we first discussed the minimum
number of DoFs of the leg structure. On the basis of this discussion, we
constructed a six-DoF biped robot with two DoFs for each ankle, no

knees, and two DoFs for the hip joint structure. From the control
viewpoint, CoP feedback was applied because joint angles are usually
affected by environmental changes, whereas the CoP trajectory remains
invariant. Considering the CoP shift in the double-support phase as an
example, the stability of CoP movement was discussed.

The experiments with the small-DoF biped robot that we con-
structed showed adaptive postural changes during CoP movements in
the double-support phase, which indicated the effectiveness and stabi-
lity of the control law proposed herein. In addition, biped walking on
both the 5° upward and downward slopes was realized. The experi-
ments demonstrated that a biped mechanism with a small DoF helps a
robot to walk on slopes. Neither the control law nor the reference
needed to be adjusted even if a disturbance, including external forces
due to environmental changes, occurs unexpectedly. However, this
robot walks only in a straight line, and its range of motion should be
extended. Further work is required to this end, including the addition of
yaw rotation to turn the robot and increasing the speed of robot motion
from the mechanical and control viewpoints.
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Appendix A. Double-support model within a lateral plane

First, the symbols used in this paper are summarized in Tables 1 and 2.
Assuming that the feet always maintain contact with the ground, the biped robot constructed in Section 2 possesses one DoF in the double-

support phase; its dynamic behavior can be described approximately by using the five-link model, as shown in Fig. A1.
In this mode, the following assumptions are made. Only motion within the frontal plane is considered. The five-link model consists of one body,

two legs, and two feet within a two-dimensional plane. Here, the ankle joints are located at the center of the foot at the same height as the ground.
The feet never slip on the ground. At both ends, the feet are in contact with the ground, and their vertical components FRO, FRI, FLO, and FLI, are
measurable. In addition, all joints in the ankle and hip can produce joint torque T and their deviations θ and velocities θ̇ are detectable, where each
subscript denotes the right ankle, right hip, left hip, and left ankle, respectively.

To express environmental changes, a constant external force Fe is assumed to be exerted on the CoM position (xG, yG). Here, the origin is set at the
midpoint between the two ankle joints.

Table 1
List of symbols (part 1).

Symbol Explanation

P CoP position
Pd Desired value of CoP position
ϕ Lateral sway angle of robot in sagittal model
θRA Angle deviation at right ankle joint
θRH Angle deviation at right hip joint
θLH Angle deviation at left hip joint
θLA Angle deviation at left ankle joint
θL Sway angle of left leg
θR Sway angle of right leg
ℓ Length from ground to CoM of leg
ℓB Half-length of body
L Leg ength
xf Distance from origin of coordinate frame to ankle joint
(xR, yR) CoM position of right leg
(xL, yL) CoM position of left leg
(xB, yB) CoM position of body
θB Sway angle of body
mB Mass of body
mL Mass of leg (same on both sides)
IB Moment of inertia of body
IL Moment of inertia of leg (same on both sides)
Kd Feedback gain of ϕ̇ for τϕ in (2)
Kp Feedback gain of ϕ for τϕ in (2)
KCoP Feedback gain of CoP position P for τϕ in (2)
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Appendix B. Definition of the coordinate ϕ

The lateral motion of this five-link model has only one DoF: sway angle ϕ, a new coordinate frame expressing the CoM position that uniquely
determines each joint angle θ in the range 0< θRH< π, 0< θLH< π. We define ϕ as

=ϕ x
y

arctan .G

G (B.1)

Here, xG and yG are described by

= + −x ρ θ θ θ θ2 cos
2

sin
2

,G
RA LA LA RA

(B.2)

= + −y ρ θ θ θ θ2 cos
2

cos
2

,G
RA LA LA RA

(B.3)

where

= +
+

ρ m L m
m m

2 ℓ
2( 2 )

.B L

B L (B.4)

From this definition, we derived the Jacobian matrix in (1). Using (B.2) and (B.3), we obtain

= −x
y

θ θtan
2

.G

G

LA RA

(B.5)

Substituting the above equation into (B.1), we obtain

Table 2
List of symbols (part 2).

Symbol Explanation

τCoP Integrated error of CoP from desired position (Eq. (7))
τϕ Generalized torque with respect to generalized coordinate ϕ

τRA Torque at right ankle joint
τRH Torque at right hip joint
τLH Torque at left hip joint
τLA Torque at left ankle joint

Fx
LH Horizontal component of interaction force at left hip joint

Fy
LH Vertical component of interaction force at left hip joint

Fx
RH Horizontal component of interaction force at right hip joint

Fy
RH Vertical component of interaction force at right hip joint

Fx
LA Horizontal component of interaction force at left ankle joint

Fy
LA Vertical component of interaction force at left ankle joint

Fx
RA Horizontal component of interaction force at right ankle joint

Fy
RA Vertical component of interaction force at right ankle joint

FRO Vertical component of ground reaction force outside of right foot
FRI Vertical component of ground reaction force inside of right foot
FLO Vertical component of ground reaction force outside of left foot
FLI Vertical component of ground reaction force inside of left foot
Fx Horizontal component of external force in sagittal model
Fy Vertical component of external force in sagittal model

Fig. A1. Notation for derivation of the motion equation.
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= −ϕ θ θ˙
˙ ˙

2
.LA RA

(B.6)

Conversely, the kinematic relationship between the joint angles is given by

− + + − =θ θ θ θ π.RA RH LH LA (B.7)

Differentiating this equation, we obtain

− + + − =θ θ θ θ˙ ˙ ˙ ˙ 0.RA RH LH LA (B.8)

In addition, the CoM position of the body link located at its midpoint, (xB, yB), can be described in two ways:

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

− + + −
+ −

⎤
⎦⎥

= ⎡
⎣⎢

− − −
− −

⎤
⎦⎥

x
y

x L θ θ θ
L θ θ θ

x L θ θ θ
L θ θ θ

sin ℓ sin( )
cos ℓ cos( )

sin ℓ sin( )
cos ℓ cos( )

.B

B

f RA B LH LA

RA B LH LA

f LA B LH LA

LA B LH LA (B.9)

On differentiating the above expressions, the following equations hold:

⎡

⎣
⎢

+ − −
− − − −

⎤

⎦
⎥ = ⎡

⎣
⎢

− − − −
− + − −

⎤

⎦
⎥

Lθ θ θ θ θ θ
Lθ θ θ θ θ θ

Lθ θ θ θ θ θ
Lθ θ θ θ θ θ

˙ cos ℓ ( ˙ ˙ )cos( )
˙ sin ℓ ( ˙ ˙ )sin( )

˙ cos ℓ ( ˙ ˙ )cos( )
˙ sin ℓ ( ˙ ˙ )sin( )

.RA RA B LH LA LH LA

RA RA B LH LA LH LA

LA LA B LH LA LH LA

LA LA B LH LA LH LA (B.10)

Solving the three Eqs. (B.6), (B.8), and (B.10) with four variables θ̇, the relationship between θ̇ and ϕ̇ is represented by

=
+

⎡

⎣

⎢
⎢
⎢

−
− +

−

⎤

⎦

⎥
⎥
⎥

=
J J

J
J J

J J
J

ϕ ϕθ J θ˙ 2 ˙ ( ) ˙ ,
1 3

1

1 2

3 2

3 (B.11)

=J θ2ℓ sin ,B LH1 (B.12)

= +J L θ θsin( ),LH RH2 (B.13)

=J θ2ℓ sin .B RH3 (B.14)

Now, we can obtain the Jacobian matrix in (1).

Appendix C. Motion equations

The equation of motion with respect to ϕ is obtained as follows:

+ + + =M ϕ C G g ξ τθ θ θ θ θ F( ) ¨ ( , ˙ ) ( , ) ( , ) .e ϕ (C.1)

Below, we derive this equation.
Then, ϕ is described using ∈X 9R as

= =ϕ J Jθ X,ϕ ϕ1 2 (C.2)

= Jθ X,θ (C.3)

where

= ⎡⎣
− ⎤⎦

∈ ×J 0 0 ,ϕ1
1
2

1
2

1 4R (C.4)

= ⎡⎣
− ⎤⎦

∈ ×J 0 0 0 0 0 0 0 ,ϕ2
1
2

1
2

1 9R (C.5)

=
⎡

⎣

⎢
⎢ −

⎤

⎦

⎥
⎥

∈ ×J
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

.θ
4 9R

(C.6)

The kinematic constraints of the link mechanism are written as

=C X( ) 0,C (C.7)

where

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

− − −
− − −
+ − +
+ − −

−
−
+
−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∈C

x θ x θ
y θ y θ
x θ x θ
y θ y θ

x θ
y θ
x θ
y θ

X( )

ℓ sin ℓ sin
ℓ cos ℓ cos
ℓ sin ℓ sin
ℓ cos ℓ cos

ℓ sin
ℓ cos
ℓ sin
ℓ cos

,C

B B B L s L

B B B L s L

B B B R s R

B B B R s R

L L

L L

R R

R R

8R

(C.8)

= −Lℓ ℓ.s (C.9)
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The motion equation is expressed as

= + +M J JX F G τ¨ .X
T

θ
T

0 (C.10)

Here,

= ∈ ×M diag m m I m m I m m I[ , , , , , , , , ] ,B B B L L L L L L
9 9R (C.11)

= ∂
∂

∈ ×J C X
X
( ) ,X

C 8 9R (C.12)

= + ∈JG G F ,G e
T

e0
9R (C.13)

= − − − ∈m g m g m gG [0 0 0 0 0 0] .G B B B T 9R (C.14)

Here, ∈ ×Je
2 9R is the CoM Jacobian matrix relating x y( ˙ , ˙ )G G and Ẋ.

By differentiating (C.7) twice with respect to time, we obtain

+ =J X C 0¨ ,X 0 (C.15)

where

= JC X˙ · ˙ .X0 (C.16)

Using (C.10) and (C.15) together, we find the following matrix equation,

⎡
⎣⎢

−
−

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

+ ⎤
⎦⎥

M J
J

JX
F

G τ
C0

¨ .X
T

X

θ
T

0

0 (C.17)

The matrix on the left-hand-side of the equation has an inverse matrix since M has it. This inverse matrix is given by

⎡
⎣⎢

−
−

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

−
M J

J
N N
N N0

.X
T

X

T1
0 1

1 2 (C.18)

Here, = − ∈− − − − − ×N M M J J M J J M( ) ,X
T

X X
T

X0
1 1 1 1 1 9 9R = − ∈− − − ×N J M J J M( ) ,X X

T
X1

1 1 1 8 9R = − ∈− − ×N J M J( )X X
T

2
1 1 8 8R . Then, (C.17) can be solved for Ẍ and

F.

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

+ ⎤
⎦⎥

N N
N N

JX
F

G τ
C

¨ .
T

θ
T

0 1

1 2

0

0 (C.19)

From (C.2),

= J ττ ϕ
T

ϕ1 (C.20)

is satisfied by the virtual work principle and

= = + +ϕ J J N J J τ NX G C¨ ¨ ( ( ) ).ϕ ϕ θ
T

ϕ
T

ϕ
T

2 2 0 0 1 1 0 (C.21)

The dynamics of ϕ is expressed by (5), where

= −M J N J Jθ( ) ( )ϕ θ
T

ϕ
T

2 0 1
1

(C.22)

= −C J N J J J N Jθ θ X( , ˙ ) ( ) ˙ ˙ϕ θ
T

ϕ
T

ϕ
T

X2 0 1
1

2 1 (C.23)

= −G g J N J J J Nθ G( , ) ( ) .ϕ θ
T

ϕ
T

ϕ G2 0 1
1

2 0 (C.24)

= −ξ J N J J J N Jθ F F( , ) ( ) .e ϕ θ
T

ϕ
T

ϕ e
T

e2 0 1
1

2 0 (C.25)

Note that X is uniquely described by θ, that is, =X X θ( ).

Appendix D. CoP position

The relationship between PCoP and τϕ is

= + +P P τ Q R gθ θ θ θ( ) ( , ˙ ) ( , ).CoP ϕ (D.1)

Now, we derive Eq. (D.1).
The CoP position PCoP is calculated from the ground reaction forces at the four contact points as follows:

= + + − − − − +P F
F

x F
F

x F
F

x F
F

x( ℓ ) ( ℓ ) ( ℓ ) ( ℓ ),CoP
RO

all
f f

RI

all
f f

LI

all
f f

LO

all
f f

(D.2)

where ℓf is the length from the ankle joint to the end of the foot, and

= + + +F F F F F .all RO RI LI LO (D.3)

Each ground reaction force is expressed as follows:
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= +F F τ1
2

1
ℓ

,LO y
LA

f
LA

(D.4)

= −F F τ1
2

1
ℓ

,LI y
LA

f
LA

(D.5)

= +F F τ1
2

1
ℓ

,RO y
RA

f
RA

(D.6)

= −F F τ1
2

1
ℓ

.RI y
RA

f
RA

(D.7)

We assume that Fall is constant because it corresponds to the total weight. Then, (D.2) can be rewritten as follows:

= +P J JF τ,CoP Z
T

Z
T

1 2 (D.8)

= −J x F x F[0 0 0 0 0 / 0 / ] ,Z f all f all
T

1 (D.9)

= −J F F[2/ 0 0 2/ ] .Z all all
T

2 (D.10)

From (C.19), F can be expressed as

= + +N J NF G τ C( ) .θ
T

1 0 2 0 (D.11)

Substituting this equation into (D.8), we obtain (D.1), where

= +P J N J J Jθ( ) ( )Z
T

θ
T

Z
T

ϕ1 1 2 1 (D.12)

=Q J Nθ θ C( , ˙ ) Z
T

1 2 0 (D.13)

=R g J Nθ F G( , , ) .e Z
T

1 1 0 (D.14)
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