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This paper proposes a method for the point cloud data
(PCD) map creation for the 3D LiDAR localization.
The features of the method include the creation of a
PCD map from a drawing of the buildings and par-
tial scan of the not-existing object of the map by the
tablet computer with the LiDAR. In the former, a
map creation procedure, including the up- and down-
sampling, as well as the processing, with voxel grid
filter is established. In the latter, automatic position
correction of the tablet scan data is introduced when
they are placed to the current PCD map. Experiments
are conducted to determine the size of the voxel grid
filter and prove the effect of the tablet scan data in en-
hancing the matching level and the localization accu-
racy. Finally, the experiment with an autonomous mo-
bile robot demonstrates that a map created using the
proposed method is sufficient for autonomous driving
without losing the localization.

Keywords: self-localization, point cloud data, map cre-
ation, design drawings, tablet computer

1. Introduction

Cost reduction in the manufacture of low-price prod-
ucts based on inexpensive labor is a promising solution to
enhancing the international competitiveness in the inter-
national markets. The production technologies will con-
tribute to it. Shorting the production time increases the
amount of the production per hour. Increasing the quality
of the production indirectly reduces the production cost
with less defective pieces. Therefore, the well-designed
automation technologies will largely improve the produc-
tivity by replacing the human workings with the machine
operations. Machines can endure the long-term labors
with suppressing the employment costs. Among the au-
tomation technologies, this paper mainly treats that of the
transportation, especially in the factories of job-shop type,
adopted, for example, in the airplane industry.

Industrial factories require the transportation of parts
in its assembling process. In the factories with the con-
veyor system, the machines for producing, processing,
or assembling are installed round the conveyors. These

machines are fixed in the factories; thus, the factory lay-
out does not change frequently. In such a situation, au-
tonomous guided vehicles (AGV) that use a “guide,” such
as the rails, magnetic devices, or simply painted lines on
the floor, are available and widely adopted to convey the
parts. The AGVs use these guides to detect their current
location in the factory and travel along the guide to their
destination.

However, some factories, such as airplane industry,
have different situations. At a so-called job-shop type
factory, the products, such as planes, are not placed on
the moving conveyor; their positions are fixed, but the as-
sembling parts and the power tools move. As a result,
the factory layout changes frequently during the assembly
process. The variable factory layout is poorly compatible
with the AGV: the products, parts, power tools, or even
workers often change their position; thus, the path of the
AGV might be modified depending on their position. The
variable factory layout makes it difficult to equip the fixed
guide for AGV.

In addition to such a guide, factories do not want to
newly set up some other sensors, such cameras or bea-
cons, because of the cost, maintenance, and installation,
which could disrupt the factory’s operation. These con-
straints limit the usage of sensors to those built inside
the autonomous mobile robot (AMR). As a result, here,
we introduce the 3D LiDAR sensing technology, which
is utilized in autonomous driving cars. This sensing tech-
nology allows cars to run on the road of our social living
space without the use of rails, as trains do.

The 3D LiDAR localization requires a map of the pre-
cise moving space, which is usually given as the point
cloud data (PCD) map. With the map, the AMR can
estimate their current position in this space. The meth-
ods that can create the map with localization, such as si-
multaneous localization and mapping (SLAM), have al-
ready been proposed [1–3]. Indeed, SLAM technology is
certainly effective for exploring completely new environ-
ments. However, the moving space for the AMR is the
factory, which is a restricted and partially known place.
Under these circumstances, the map must be prepared in
advance to reduce the computational cost for creating it
during automatic transportation. From now on, this paper
will focus on the map creation for the 3D LiDAR local-
ization.
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The 3D LiDAR on the AMR is sometimes utilized to
scan the environment and mapping [4]. The utilization of
the 3D LiDAR on the AMR has some merits: we do not
have to purchase new equipment; we can use the AMR
we already have; the same 3D LiDAR is used for local-
ization; thus, the data is free from the individual property
differences in the sensors. In the mapping and localization
process, the condition on the data acquisition, particularly
in the height of the LiDAR position, is the same. How-
ever, when we introduce this method to the actual factory,
some factory staffs have to learn both how to operate the
AMR to scan the factory environment and how to create
maps from the scanned data. This kind of the education
has become a major issue in the actual factory. Namely, a
map creation without the scan with AMR is preferable.

Many studies on map creation, such as point cloud
mapping [5], have been published. One of the power-
ful methods this paper utilizes is the normal distribution
transformation (NDT), which divides the mapping space
into several pixel/voxel grids of the same size and approx-
imates the distribution of point clouds using the continu-
ous Gaussian function in each grid [6, 7]. This approx-
imation with the continuous Gaussian function enables
us to compute matching computation using derivatives,
though the discretized point cloud data are originally non-
differentiable. The NDT approach is improved in some
ways, such as adaptive resolution [8] and combining the
occupancy maps [9]. However, this paper focuses on the
data before it is transformed: how to create the feature
map from point clouds for the localization without using
a LiDAR scan.

To the field of the factory automation, the localization
technology is recently being introduced. Yilmaz et al. [10]
utilized affine interactive closet point method for the lo-
calization in the manufacturing systems with introducing
the correlation entropy criterion. Zhou et al. [11] com-
bined the point cloud data with the 2D camera information
to detect the localization of the many tools’ part to handle
with the mobile manipulator based on the deep learning.
Our aim is also the factory automation, but the approach
is different in that our focus is placed to map creation for
the LiDAR localization. There, we discovered that the
place the AMR travels is almost indoor. If so, a drawing
of the interior of the building should be available for in-
door navigation [12,13]. Although the scale might be dif-
ferent from the actual one, the relative size or positional
relation between rooms in the drawings will be precise.
One idea in this paper is to utilize the figure information
on the drawings to create the map for the 3D LiDAR lo-
calization. This will allow us not to visit the factory for
the map acquisition, as Takahashi et al. [14] focused on
its merit. Hoshino and Yagi [15] utilized the cadastral
map for the outdoor navigation of AMR. Though our idea
might be similar to theirs, the target and thus the approach
becomes different in whether the PCD map or the occu-
pancy grid map. However, there would be some objects
not being drawn in the factories, such as the power tools
and containers. Another idea in this paper is to scan non-
existing objects in the drawings using a portable LiDAR,

i.e., the tablet terminal with the LiDAR, never the LiDAR
on the AMR. This idea can cope with the case where the
factory layout is partially changed, i.e., variable factory
layout. Many objects are modeled as the PCD [16]. The
major features of this paper are that design drawings and
a widely used tablet computer with LiDAR are used to
create the PCD map, and this map is applied for the au-
tonomous driving of an AMR. Thus, the aim of this paper
is different from the study of indoor point clouds for re-
constructing a parametric 3D building models [17], the
classification [18], or the semantic segmentation [19–21].
The related works are summarized on Table 1.

The remainder of this paper is organized as follows.
Section 2 establishes a process to create the map for the
3D LiDAR localization from the drawings and to add the
tablet scan data on the map. In this map creation pro-
cess, some parameters have to be chosen. Sections 3, 4,
and 5 are devoted to the experimental studies: Section 3
demonstrates not only a parameter selection relating the
down-samplings, but also the localization improvements
by tablet scan data. Section 4 introduces the automatic po-
sitional correction of the tablet scan data when it is placed
to the map created from the drawings, and the allowable
deviation is experimentally investigated. And, Section 5
aims to achieve the autonomous driving using the map
created by our method. Finally Section 6 concludes this
paper.

2. Map Creation for 3D LiDAR Localization

2.1. Purpose
The main purpose of this paper is to create a map for

3D LiDAR localization. This paper adopts the algorithm
“NDT matching” for the localization [22]. The NDT
matching treats the data from both the LiDAR scan and
the map as the PCD. Therefore, a 3D map has to be cre-
ated in the PCD format, in which the 3D space where the
walls or objects exist is filled up with the point data.

2.2. PCD Map Creation from Drawings
Here, we propose a method to create the 3D map in the

PCD format (hereafter, “PCD map”) from the 2D draw-
ings. In this method, we will utilize the geographical
information, such as the relative position or size of the
rooms, corridors, walls, or doors in the drawings.

We established a method to create the PCD map [23]
considering the following factors.

a. Discretization: The transforming of drawings to the
PCD map is a kind of spatial discretization: the contin-
uous lines representing some walls or partitions within
the buildings have to be expressed by a huge amount of
discrete point data, i.e., point clouds. At the current es-
timation position, too few points cannot adequately de-
scribe the environments, while too many points consume
the computational cost at the current position estimation.
Thus, proper down-sampling is required. For this down-
sampling, we apply the voxel grid filter [a] to distribute
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Table 1. Related works.

Method Characteristics Our method
SLAM (e.g., [1–3]) Map creation with localization. Large computational cost. can create map from design drawing

before bringing AMR to the cite.
NDT (e.g., [6–9]) Utilization of continuous Gaussian function to express dis-

tribution of discrete PCD. PCD is usually obtained from
LiDAR on AMR.

also utilizes NDT, but PCD data is
obtained from LiDAR on NOT AMR
BUT tablet computer.

Yilmaz et al. [10] Affine interactive closet point method introducing correla-
tion entropy criterion. Target is manufacturing system.

adopts NDT and target is factory map-
ping.

Zhou et al. [11] PCD plus 2D camera information is utilized for mobile
manipulator. Target is tools’ part localization.

aims at map creation for self-
localization only from PCD.

Pinto et al. [12] Localization algorithm for indoor navigation using camera
image and tilting laser range finder.

treats same indoor navigation, but tar-
get is PCD map creation.

Zhang et al. [13] Indoor localization from wheel odometry, inertia measure-
ment unit and ultra wideband by without LiDAR and GPS.

treats same indoor navigation, but tar-
get is PCD map creation.

Takahashi et al. [14] Outdoor localization based on edge-node map using inner
sensor.

treats LiDAR indoor localization based
on PCD map.

Hoshino and Yagi [15] AMR outdoor navigation based on occupancy map and
cadastral data.

is for indoor navigation based on PCD
map from design drawings.

Studies on PCD [16–21] PCD are utilized to 3D modeling, model reconstruction,
classification, semantic segmentation and so on.

applies PCD to localization.

the points uniformly with almost the same intervals.
b. Height information: 3D PCD map should contain

the height information, but the 2D drawings do not. This
solution to this problem is to construct adequate high
walls in the PCD map. Most of the radar from the LiDAR
reflects to the wall and does not reach the ceiling because
the AMR moves indoor, and thus, the LiDAR scan dis-
tance is short.

c. Scaling: The scale varies depending on the drawing.
To scale the map to the actual distance, we execute the up-
or down-sampling of the PCD map according to the scale
of the drawings at the final process.

The procedure of the map creation from the drawings
that we propose is summarized as follows:

1. Input the drawing to the computer. Suppose that the
drawings are given in the paper. The paper data are
first scanned and then inputted to the computer. The
binary image data is then obtained.

2. Preprocessing the image. The extra information
other than the walls, partitions, such as the dimen-
sion lines or the numbers, are eliminated. Then, the
voxel grid filter is applied to down-sample the image.
At this stage, the 2D discretized map is obtained.

3. Generating the 3D map. Following the PCD format,
the 3D PCD map is generated based on the map in-
formation. It is a process to accumulate the point
cloud data to the height direction at the position of
the walls or partitions.

4. Rescale. At the last stage, the scale of the PCD map
is adjusted to match the real space.

Fig. 1 shows a CPD map created from the drawings. The
PCD were distributed uniformly along the wall surfaces,

with the constant gap size, as we expected thanks to the
voxel grid filter. However, the rate of the down-sampling
in relation to the point cloud density is an essential prob-
lem. We will examine it experimentally in Section 3.

2.3. Non-Existing Objects on the Drawings
Actual factories have many objects not included in the

drawings, such as power tools, containers, assembly parts,
and products. Furthermore, these objects tend to change
their position. Under these conditions, the map have to be
updated up to the current situation, before operating the
AMR.

Here, we propose a method for updating maps using
portable tablet computers with a LiDAR. Indeed, it is a
demerit that the tablet computer has to be newly pur-
chased: if the LiDAR equipped on the AMR is utilized,
the cost for new sensors is unnecessary. In contrast to the
equipped LiDAR, however, the tablet computer has some
usages, such as social media, games, or music player,
other than the sensor, and its human-interface is excellent.
Thus, we concluded that some of the users might have al-
ready possessed the tablet computer or find it worthwhile
to get one. Throughout this paper, “tablet scan” means an
action to obtain the PCD data of the real world using the
tablet computer with the LiDAR, and the obtained PCD
data is called “tablet scan data.”

A crucial problem in this idea is how to place the scan
data at the appropriate position on the PCD map. A
free application software, “Cloud Compare,” allows us to
graphically display a series of PCDs in a computer win-
dow and alter its position with the mouse device.

In fact, we can place the scan data intuitively to the
appropriate position at the PCD map. However, the man-
ual placement with the mouse device seems inexact. As
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(a) Drawing. (b) PCD map.

Fig. 1. Example of PCD map created from a drawing.

(a) A map from drawings. (b) Tablet scan data.

(c) Original scan data (the same as (b)). (d) Reference data without the target object (staircase).

(e) Rough placement. (f) Target object at the correct position.

Fig. 2. Automatic placement of tablet scan data.

a result, we believe a function is required such that, when
the scan data is placed near the true position on the GUI
software, it is automatically placed to its correct position.

To achieve the above idea, we found that the tablet scan
data should include the PCD data for not only “the target
object,” i.e., the missing one that should be newly added
to the current PCD map, but also already-existing “the
reference objects” working as a key to place the target
object in the correct position on the map. Thus we decided
to require the users to perform the following operations

for the tablet scan:

1. Tablet scan. This scan should include the reference
objects, such as walls or some other landmarks in
the factory that are already on the current PCD map
(Fig. 2(a)).

2. Preprocessing. The target object has no data to
match on the current PCD map (Fig. 2(b)) since it
does not exist there. In other words, the target object
data inversely impedes the localization. The match-
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ing for the localization will be computed effectively
only for the reference objects that are already on the
PCD map. Thus, only the reference objects should
remain, as seen in Figs. 2(c) and (d), by eliminating
the target objects. (So far, this eliminating process
is executed manually by “Cloud Compare” in which
we can select the object to eliminate easily with the
mouse operation.)

3. Rough placing. To facilitate the convergence to the
correct position, the user teaches a rough position of
the object. In Fig. 2(e), the reference LCD is placed
at a position close to the correct one.

4. Matching. Run the matching algorithm between the
reference object data and PCD map by setting the po-
sition given in the previous step as the initial value.
As a result, the coordinate transformation to the esti-
mated correct position is obtained.

5. Compound. Translate the position of the target ob-
ject PCD (which can include the reference data) ac-
cording to the result of the previous step, and com-
pound it to the current PCD map (Fig. 2(f)).

The third step determines the extent the user can deviate
from the true position of the target object. This will be
examined by the simulation case study in Section 4.

3. Experiment 1: Localization on the Map
from Drawings

3.1. Purpose
Although we showed the effectiveness of the voxel grid

filter in the map creation in Fig. 1(b), the appropriate size
of the filter in the actual application is unknown. Addi-
tionally, the effect of the tablet scan data is not confirmed.
Thus, the purpose of this section is to empirically examine
the following:

• the appropriate size of the voxel grid filter, and

• the effect of the tablet scan data,

while evaluating the localization results for the various
maps created in the different conditions.

3.2. Experimental Setup
This paper focuses on the map creation method. Thus,

what we should evaluate is the map; the accuracies of the
localization were evaluated for the maps we created with
the different conditions in the first two experiments. The
experimental setup was constructed so that all other con-
ditions, such as the localization algorithm or input data,
became the same across all maps.

The experiments were conducted at a building in Gifu
University. Accordingly, all of the maps were cre-
ated from the drawings of this building, as illustrated in
Fig. 1(a).

The data for the 3D localization were obtained using
the cart shown in Fig. 3(a), which featured a LiDAR
(Velodyne LiDAR VLP-16) at the top shelf at a height
of 0.8 m from the floor, a personal computer (PC) at the
middle shelf, and a direct current (DC) battery at the bot-
tom shelf. The PC was operated by the robot operating
system (ROS) [b], on which the free auto-driving control
software, “Autoware,” [c] was running. In the experimen-
tal space, six points are selected for the localization, as
shown in Fig. 3(b). These points were marked on the
floor with yellow circular seals of 1 cm radius, and the
exact position was manually measured using a measuring
tape. The cart was placed on the yellow seals so that the
LiDAR position corresponded to exact upper position of
the seals, and the LiDAR data was collected for 5 s us-
ing the ROS command, “rosbag.” This operation was re-
peated at each six position in a predetermined scan order.
A series of the six scans comprise one trial, and the six tri-
als were conducted in the different scan order starting at
the marker 3. These rosbag data enable us to evaluate the
localization results for each map in the same way; the ros-
bag can recreate the same situation as if exactly the same
data were obtained from the LiDAR at the same timing.

3.3. Analysis
An algorithm, NDT matching, was applied to the

LiDAR scan data against the map created under the vari-
ous conditions. It not only calculates the current position
estimate in the map, but also an index value. Transfor-
mation probability (TP) [24] indicates the matching level
between the scan data and the referred map. We evaluated
the appropriateness of the created map with the values:
TP and the positional error of the estimate from the actual
value, which were obtained with a measuring tape.

To compare the matching level of the map created from
the drawings, we also examine TP to the map created from
the LiDAR scan data, which is often utilized for the map
creation. These scan data were acquired from the same
LiDAR that was used in the experiments and was installed
at the same height. Accordingly, a high TP evaluation was
expected to be obtained from this map. In other words, we
could improve our map creation method at most to this TP
value.

The TP does not indicate the accuracy of the positional
estimate. For the six trials, the average of the estimates
during the period the cart stopped at each target position
was calculated. The average of the six trials, as well as the
error ellipse from these six values, were also calculated.

3.4. Effect of the Size of the Voxel Grid Filter
3.4.1. Methods

In pilot experiments, we confirmed that the map cre-
ated from the drawing can accurately estimate the current
position without computation divergence. Here we aimed
at clarifying which size of the voxel grid filter provides
the best result; therefore, we tested the seven filter sizes:
0.025, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 m. Fig. 1(b) shows
one of the map we created.
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(a) Cart with LiDAR. (b) Experimental space.

Fig. 3. Environment and setup for experiment.
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Fig. 4. Comparison of TP values for the different gap size.

3.4.2. Results and Remarks

In Fig. 4, the changes of TP are illustrated for each trial.
Fig. 5(a) shows the average of each target point for each
filter size.

From Fig. 4, the 0.40-m filter size got the best TP, ex-
cept for the map from the LiDAR scan. This implies that

too large or too short filter size cannot provide the best
matching, and that the optimal size exists.

Figure 5(a) shows the positional error for the 0.40-m
filter size of the best TP. If the filter size was selected cor-
rectly, the error of the estimates was almost within 0.1 m.
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(a) Map from drawing only. (b) Map with tablet scan data.

Fig. 5. Estimated positions.
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Fig. 6. Comparison of TP with and without the table scan data.

3.5. Improvement of Tablet Scan Data
3.5.1. Methods

The tablet scan data is compounded to some PCD maps
from the drawings, following the method in Section 3.4.

Exactly the same LiDAR data as Section 3.4 are inputted
for the 3D localization using the rosbag command, and
the TP is compared with Fig. 6 at the best filter size of
0.4 m and the worst filter size of 0.025 m.
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3.5.2. Results and Remarks
Figure 6 illustrates the comparison of TP for each trial.

Fig. 5(b) shows the average of each target point for each
filter size.

During most of the period, TP is higher in the map with
the tablet scan data than in those without it, as shown in
Fig. 6. Namely, we can conclude that the tablet scan data
certainly improves the matching accuracy.

In terms of localization accuracy, the position is esti-
mated to be within 0.13 m error, as shown in Fig. 5(b).
In most trials, the error is within 0.1 m on average and is
smaller than the map without the tablet scan data. Thus,
the tablet scan data should be compounded in terms of
accuracy.

4. Experiment 2: Allowable Placement
Deviation of Tablet Scan Data

4.1. Purpose
Section 3.5 demonstrated that the tablet scan data im-

proves the localization performance as expected. How-
ever, it requires the scan data should be placed at the
correct position. The automated adjustment mechanism
in Section 2.3 is a convenient way to achieve this eas-
ily. However, the algorithm to find the correct position
of the tablet scan data, i.e., the matching algorithm, does
not always work appropriately due to its local minima in
the computation process; to avoid this, the initial position
should be placed as close to the true position as possible.
Here, we experimentally examine what extent of the devi-
ation is allowable for the manual placement of the tablet
scan data.

4.2. Methods
The PCD map and tablet scan data from Section 3

are used: the PCD map was created from the draw-
ings of a building at Gifu University containing no stair-
case. The size of the applied voxel grid filter was 0.4 m.
The staircase was scanned using the application software
CANVAS (Occipital, Inc.) on iPad pro 2nd generation
(Apple Inc.) tablet computers with LiDAR.

The positional and rotational deviation from the cor-
rect placement was independently given as the initial po-
sition of the tablet scan data for the repetitive computation
of the matching algorithm. The positional deviation was
measured in the range from −0.9 to +0.9 m in all direc-
tions with 0.1 m interval, while the rotational deviation
was measured in the range from −15° to +15° with 1°
interval. The center of the rotational deviation was set to
the origin of the object PCD, which was the starting point
of the tablet scan in the real space.

For the matching algorithm, NDT matching was
adopted by calling its function from the C++ library
“Point Cloud Library” [d]. The grid size of NDT match-
ing algorithm is selected as 1.0 m.

Euclidean Fitness Score, which is obtained from a func-
tion in the Point Cloud Library, is used to evaluate the

(a) Euclidean Fitness Score is 0.0375.

(b) Euclidean Fitness Score is 0.0577.

(c) Euclidean Fitness Score is 0.1736.

Fig. 7. Result of the pilot test for automated adjustment of
the tablet scan data.

matching. The Euclidean Fitness Score is a positive num-
ber that represents the averaged squared distance between
two point clouds, and thus represents the matching level
of the two point clouds match. In the pilot test, this score
ranges from 0.036 to 0.038 if we can visually ascertain
that the object PCD was placed at the appropriate position
as shown in Fig. 7(a). However, if the value is over 0.038,
we can find an inappropriate matching, such as the place-
ment far from the correct position (Fig. 7(b): estimated
lower), or a wrong orientation (Fig. 7(c): estimated clock-
wise). In the experiment, the Euclidean Fitness Score was
over 0.038, implying that the matching was not achieved.

4.3. Results
The influence of translated deviation was depicted in

Fig. 8 for the vertical deviation Δz = 0, ±0.1, ±0.3, ±0.5,
and ±0.9 m. Each figure contains a 19×19 lattice, whose
rows correspond to the forward-backward deviation Δy
and columns correspond to the lateral deviation Δx in the
horizontal direction. Symbols represents the largeness of
the final Euclidean Fitness Score: it is smaller than 0.038
at • indicating that the correction was succeeded, between
0.038 and 0.05 at ◦, and larger than 0.05 at × where the
result was far from the correct position.

Figure 9 shows the final Euclidean Fitness Scores de-
pending on the initial rotational deviations.
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Fig. 8. Final Euclidean Fitness Score depending on the initial translational deviations.

0.038

Fig. 9. Final Euclidean Fitness Score on the initial rotational deviations. The meaning of the marks, •, ◦ and ×, are the same as Fig. 8.
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4.4. Remarks
The convergence to the correct position becomes diffi-

cult when the initial placement deviates to the negative
Z direction. The PCD map created from the drawings
did not include neither the ceiling nor the floor, while the
staircase PCD included the ceiling but not the floor. Thus,
the matching algorithms try to match the ceiling data of
the staircase PCD placed lower than actual due to the ini-
tial deviation to the negative Z direction, even to the wall
in the PCD map. To avoid it, some improvements on the
map creation will be required, such as adding the ceiling.

In this experiments, a deviation of more than 0.9 m is
allowable in the positive Y direction, even if the devia-
tion in the X direction is equal to 0.9 m. However, if the
amount of the deviation is within 0.7 m to the negative Y
direction, convergence to the correct position is ensured.
The difference in the Y direction will be caused by the
width of the wall in the PCD map. The staircase PCD con-
tains only the inside of the wall. Thus, the initial place-
ment to the outside will ensure that the wall in the stair-
case PCD matches to the outside of wall in the PCD map.
This may be avoidable by instructing the users when we
designate the initial placement of the object PCD. Conse-
quently, if the object PCD is set to the inner part of the
wall, a 1-m deviation will be allowable in its initial place-
ment.

However, the rotational deviation was allowed in the
range from −11° to 8°, where the Euclidean Fitness Score
was under 0.05. Outside that range, the Euclidean Fitness
Score drastically jumped to over 0.3. Asymmetry in Eu-
clidean Fitness Score to the positive-negative rotation will
come from the origin of the rotation and the room struc-
ture, such as the wall position. In this case, there are more
point clouds in the lower left area in the map. Thus, the
negative rightward rotation did not result in a greater re-
duction in matching points than the leftward rotation.

Comparing the translational and rotational deviation as
an initial position of the matching algorithm, the former
tends to be more robust. In some other rotational exper-
iments in the different origin, only a one-degree rotation
largely changed the matching among the points clouds.
Regardless, we should place the initial object PCD allow-
ing few rotational deviation, which can be achieved easily
by starting the tablet scan with the normal direction to the
reference wall in the real space.

5. Experiment 3: Autonomous Driving

5.1. Purpose
The purpose of this experiment is to confirm that the

map created from the drawings enables the AMR to travel
along the designated path automatically.

5.2. Methods
Figure 10(a) shows the AMR constructed by altering a

wheelchair (WHILL model C: WHILL Inc.) to carry some
pieces of small baggage. The PC runs ROS on Ubuntu

18.04, and Autoware is utilized for the autonomous driv-
ing control.

The experiment is conducted in the same building as
mentioned in Sections 3 and 4. The map is selected as
the one with the 0.4-m filter size from which the best lo-
calization result was obtained. In Fig. 10(b), the desired
path planned on the created map is depicted as a right-
ward curve. Following this path in the experiment, the
AMR will turn to the right and go straight.

5.3. Results and Remarks
In all five runs, the AMR successfully travelled to the

goal position following the desired path under the condi-
tion described in the previous section. The paths of the
five experiments are over-drawn in Fig. 10(c). Fig. 10(d)
shows the photos taken during one of the experiments.

The expected movement is being achieved with the lo-
calization based on the map created from the drawings.

6. Conclusion

This paper proposed a map creation method for 3D
LiDAR localization. The following two aspects are ap-
parent: the map creation from the drawings, and the tablet
scan of the non-existing objects on the map.

Regarding the first aspect, we focused on the fact that
the place the AMR is supposed to run is nearly entirely
inside of the buildings: there will be a drawing for the
indoor environments. These drawings are usually drawn
with the exact relative size as the actual building, though
the scale is different. Thus, if the scale is adjusted at the
final step, the map with the actual scale will be easily ob-
tained. Because the map has a PCD format [e], we created
the 3D PCD map file directly from the drawings by dis-
tributing the PCD at the position of the walls or partitions
and accumulating them to the vertical direction.

The second aspect has an advantage in that the tablet
computer is widely utilized in our daily life. This compact
computer replaces the big AMR equipping the LiDAR in
scanning the environment. The problem of appropriately
placing the tablet scan data on the PCD map was solved
by introducing the matching algorithm, NDT matching,
which detects the most probable position of the scanned
object using the simultaneously scanned reference data if
it is initially placed close to the correct position.

The first of three experiments were conducted to de-
termine an important parameter: the size of the voxel grit
filter, which determines the gap size along the wall surface
on the PCD map. In this experiment, for the localization at
the entrance of the building, the optimal size of the voxel
grid filter was 0.4 m. This experiment also demonstrated
the effectiveness of the tablet scan data. The tablet scan
data enhance not only the matching level of the LiDAR
scan data but also the accuracy of the estimated position.
The second experiment showed that the automatic posi-
tion correction of the tablet scan data worked as we in-
tended. In this experiment, the translational deviation al-
lowable in the worst direction toward the wall was 0.7 m,
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(a) AMR.

(b) The desired path on the map.
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(c) The paths of five automatic driving experiments with desired path.
The bold gray line is the desired path.

(d) Photos during the autonomous driving.

Fig. 10. Experiment of the autonomous driving using the map created from the drawing.
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while the allowable rotational deviation was 10°. Regard-
less, the tablet scan data should be placed as close to its
true position as possible. The third experiment succeeded
in the autonomous driving of AMR without losing its po-
sition. This means that the map created using the pro-
posed method can be available for the localization during
autonomous driving.

Although we established a map creation method, the
processes were not automatic, i.e., some manual tasks are
needed, such as the elimination of the dimension lines and
their numbers and the removal of the target object from
the tablet scan data remaining the reference object data.
We are working on a software program to reduce these
manual tasks. Another problem is that some parameters,
such as the size of the voxel grid filter, depend on the en-
vironment where the AMR travels. The airplane factory
is huge, and thus, the optimal size of the voxel grid filter
may differ from the one used in this paper. We believe
this optimal size of the voxel grid filter might be related
to the grid size of the NDT matching algorithm. It was set
to 1 m in our experiments, while the optimal size of the
voxel grid filter was 0.4 m. The voxel grid filter with a
size several times less than the grid size of NDT matching
algorithm should be selected from this result. Consider-
ing this prediction, we should create maps for various en-
vironmental sizes and compare the optimal parameter to
find some tendencies through the experiments.
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