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Abstract

When standing on a slope, a human adjusts his or
her posture, i.e., ankle joint angles adjust to the gra-
dient of the slope. In such adaptive behavior, ground
reaction forces play an important role. Based on this
view, we propose a new posture control law that em-
ploys PD and force feedback control, and prove its ef-
fectiveness in creating local stability. Applying this
control law to a simple robot system, we examine this
law's e±ciency. In this experiment, the robot achieves
a behavior adaptive to constant external force. Finally,
we discuss the possibility of control only using force
feedback in consideration of human muscle properties.
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1 INTRODUCTION

To maintain upright posture is one of the noticeable
characteristics of human motion. In such a simple but
fundamental motion, humans select an adequate pos-
ture with respect to their environmental conditions.
For example, when standing on a slope, a person ad-
justs his or her ankle joints in such a way that the body
is always oriented in the gravitational direction. In a
°ow ¯eld, e.g., in a river or storm, a human leans his or
her body upward against the °ow. The control mecha-
nism of such an adaptive behavior constitutes an area
of signi¯cant interest, and should be elucidated in light
of speci¯c motor function. However, the formalization
of changes in the adaptive standing posture,including
environmental models, have been rarely reported.
Previous studies of balance control in a biped system

have focused on ground reaction forces. This informa-
tion is used for the measurement of actual ZMP (zero
moment point) position [1, 2, 3], or an impedance con-
trol of a swinging leg especially at the point of touch-
down [4]. However, few works have described systems
that depend on ground reaction forces, i.e., have se-
lected them for use as control variables.
In this paper, we focus on ground reaction force,

since we also consider that the ground reaction forces
include useful information to achieve an adaptive be-
havior in standing posture control. In the proposed
control law in the present study, the forces (more pre-
cisely, the di®erence of forces at both ends of the foot)

are treated as control variables. Generally, when con-
trolling the force, the position is not controlled in this
direction, which often make body balance unstable.
Thus, in our previous work [5], we have reported an-
other control law and its simulations, where two force
control laws are switched alternatively. However, this
method requires a high frequency of switching, and
thus did not work well when applied to actual legged
robot systems. Based on this result, we aimed at a
method that did not require the switching. Here, we
describe a new control method and analyze its stability,
and show the result of its experimental application.

2 MODEL AND CONTROL

Motion equation with environment
A human body has a complex structure with many
links and joints. Among these joints, ankle joints exert
the most crucial e®ect on human balance control, be-
cause the ankle joints are located at the base of human
standing posture. A slight displacement of the ankle
joint creates a large deviation in the COG (center of
gravity) of the body. Of course, the displacements of
the other joint angles also in°uence position, but these
in°uences are relatively smaller than that of the ankle
joint. Therefore, we assume that the displacement of
joint angles other than that of the ankle is small dur-
ing upright standing, and so represent the body part
in terms of this single link.
The problem we should solve is how to determine the

ankle joint torque which achieves adaptive posture ad-
justment to environmental conditions. In the present
study, we consider the environmental force to be con-
stant, as is the case when we stand on sloping surface
or in a constant °ow ¯eld (air °ow or water °ow).
In light of these problem settings, we modeled a

standing legged system as shown in Fig. 1. This
model consists of two links: a body part and a foot
part. These two links are connected at the ankle joint,
and torque for balance control can be generated here.
For the sake of simplicity, the motion of this model is
restricted to the sagittal plane on level ground. The
model contacts the ground only at the two points of
the foot, i.e., toe and heel. Here, the vertical compo-
nent of ground reaction forces FT (at the toe) and FH
(at the heel) are detectable by the force sensors.
Assuming that the friction on the ground is so large

that the foot does not slip on it, only the body part is



Figure 1: Link model.

dynamic and this motion is described as

I Äµ =MLg sin µ + FxL cos µ ¡ FyL sin µ + ¿; (1)

whereM is the mass of the body part, I is the inertial
moment of the body part around the ankle joint, L
is the length between ankle joint and the COG of the
body part, µ is the ankle joint angle from the vertical
direction, ¿ is the ankle joint torque, Fx and Fy are
constant external forces, respectively, in the horizontal
and vertical directions, and g is gravitational acceler-
ation. Note that the environment is represented by
Fx and Fy. Internal force between links, fx and fy, is
described as

fx =MLÄµ cos µ ¡ML _µ2 sin µ ¡ Fx; (2)

fy = ¡MLÄµ sin µ ¡ML _µ2 cos µ +Mg ¡ Fy: (3)

Furthermore, from the balance of torques around the
heel and toe, the vertical component of ground reaction
forces, FT and FH , are described as

FT = ¡ 1

`T + `H
¿ +mT g +

`H
`T + `H

fy; (4)

FH =
1

`T + `H
¿ +mHg +

`T
`T + `H

fy: (5)

Here, `T , `H , and `G represent the length from the
ankle joint to, respectively, the toe, heel, and COG of
the foot. mT and mH is a mass of the foot weighted
respectively to the toe and heel, which is given by

mT =
`H + `G
`T + `H

m;mH =
`T ¡ `G
`T + `H

m; (6)

where m is the total mass of the foot.
For simplicity of calculation, we normalize the ex-

ternal forces Fx and Fy by the gravitational force of
the body,

Fx = ®Mg;Fy = ¯
0Mg: (7)

Then, the motion equation (1) can be described as

I Äµ = ®MLg cos µ + (1¡ ¯0)MLg sin µ + ¿
= MLg

p
®2 + ¯2 sin(µ ¡ µf ) + ¿; (8)

where ¯ = 1¡¯0 and µf satis¯es the following equations

sin µf = ¡ ®p
®2 + ¯2

; cos µf =
¯p

®2 + ¯2
: (9)

Note that ® and ¯ determine the environmental con-
ditions.

A control law
Instability by force-only control: Initially, we as-
sume a simple symmetrical mechanical structure, i.e.,
`T = `H = ` and `G = 0. In order to maintain body
balance, it is necessary that both FT and FH are al-
ways positive. Moreover, when body mass is evenly
weighted between the toe and heel, stability will be
greatest. So, a control law which reduces the di®erence
between FT and FH will be easily accessible. From (4)
and (5), we obtain the relation between FH ¡ FT and
¿

FH ¡ FT = 1

`
¿: (10)

Thus, if we de¯ne the torque input as

¿ = ¡` ¢KI

Z
(FH ¡ FT )dt; (11)

then FH ¡ FT goes to zero, and body mass is evenly
weighted to both ends of the foot. Unfortunately, how-
ever, this torque input does not maintain an upright
posture, since the body tumbles while maintaining FH¡
FT = 0. This will be shown in the next section.

PD and force feedback control : In order to sta-
bilize the body parts, we ¯rstly utilize the PD control
laws:

¿µ = ¡Kd
_µ +Kp(µd ¡ µ): (12)

Here, Kd and Kp are positive constants correspond-
ing to the velocity and position feedback gains, re-
spectively. µd is the desired joint angles of the PD
control, and should be zero when the object of con-
trol is to make the body upright. Due to the external
forces, however, µ does not converge to µd. Substitut-
ing ¿ = ¿µ to (8), we obtain the equation

I Äµ =MLg
p
®2 + ¯2 sin(µ ¡ µf )¡Kd

_µ +Kp(µd ¡ µ):
(13)

Assuming that µ ¡ µf » 0, we can linearize the above
equation at µ = µf , and then get the following equation

Äµ = ¡Kd

I
_µ ¡ (Kp ¡MLg

p
®2 + ¯2

I
)(µ ¡ µ0); (14)

where

µ0 =
Kpµd ¡MLg

p
®2 + ¯2µf

Kp ¡MLg
p
®2 + ¯2

: (15)



This equation implies that µ converges to µ0 if Kp >

MLg
p
®2 + ¯2.

At this stage, the balance of the body is maintained
by the PD control. Next, we add to it the adaptation
torque in relation to environmental changes. As men-
tioned in the Sec. 2, it is preferable for the sake of
stability that the body weight is placed evenly on both
ends of the foot. According to this criterion, we de¯ne
force feedback input as

¿f =

Z
(FH ¡ FT )dt; (16)

and the resultant torque is constructed by the PD and
Force feedback control (PDF control):

¿ = ¿µ +Kf¿f : (17)

Here, Kf is a force feedback gain. Kf should be su±-
ciently smaller Kp and Kd, because the adaptation oc-
curs after the body balance is maintained completely
by the PD control.

Stability analysis: For the PDF control input (17),
we can ensure the local stability of the body part.

Theorem 1 For the dynamical system (1) with sym-
metrical structure `T = `H = ` and `G = 0, consider
the control input given by (12), (16), and (17). If the
feedback gain Kd, Kp, and Kf satis¯es the inequalities,

Kp > MLg
p
®2 + ¯2 > 0 (18)

`

I
Kd > Kf > 0 (19)

(Kd`¡KfI)Kp > Kd`MLg
p
®2 + ¯2 (20)

then µ = µf becomes the local asymptotic stable equi-
librium point.

Proof 1 Substituting (17) to the motion equation (1),
we can obtain

I Äµ =MLg
p
®2 + ¯2 sin(µ¡µf )¡Kd

_µ+Kp(µd¡µ)+Kf¿f :
(21)

On the other hand, di®erentiating (16) and then using
(10),

_¿f =
1

`
(¡Kd

_µ +Kp(µd ¡ µ) +Kf¿f ): (22)

Now, calculate an equilibrium point (¹µ; ¹¿f ) of the dy-
namics described by (21) and (22). By substituting
Äµ = _µ = 0 and _¿f = 0, (21) and (22) respectively be-
come,

MLg
p
®2 + ¯2 sin(µ ¡ µf ) +Kp(µd ¡ µ) +Kf¿f = 0;

(23)
1

`
(Kp(µd ¡ µ) +Kf¿f ) = 0: (24)

Solving two algebraic equations, we obtain

(¹µ; ¹¿f ) = (µf ;
Kp

Kf
(µf ¡ µd)): (25)

Figure 2: Stationary posture

Next, let us examine the stability of this equilibrium
point. Di®erential equations linearized at the equilib-
rium point are,24 _µ1

_µ2
_¿f

35 =
264 0 1 0

MLg
p
®2+¯2¡Kp

I
¡Kd

I
Kf

I

¡Kp

` ¡Kd

`
Kf

`

375
24 µ1
µ2
¿f

35 ;
(26)

where µ1 = µ and µ2 = _µ. Thus, the characteristic
equation are given by

¸3 + p2¸
2 + p1¸+ p0 = 0 (27)

where

p2 =
Kd`¡KfI

I`
; p1 =

Kp ¡MLg
p
®2 + ¯2

I

p0 =
KfMLg

p
®2 + ¯2

I`
: (28)

According to the method described by Routh/Hurwitz,
the necessary and su±cient conditions that the equilib-
rium point becomes stable are given as

p0 > 0; p1 > 0; p2 > 0; p1p2 ¡ p0 > 0 (29)

From these inequalities, we can derive the conditions
(18)-(20).

It should be noted that the control input (11) does
not satisfy conditions (18)-(20) since Kd = Kp = 0.
Therefore, a control law with force-only feedback (11)
does not maintain body balance.

Control for asymmetrical structure: In this sec-
tion, we extend the control input (17) for the case that
`H 6= `G and `G 6= 0. Then, FT and FT are not al-
ways equal even though the body stands upright under
a non-perturbed environment, i.e., Fx = Fy = 0. This
is because the mass weights are applied to the toe and
heel unevenly due to the asymmetrical structure. Tak-
ing this into account, we design the adaptation torque
¿f as

¿f =

Z
(FH ¡FT ¡ (mH ¡mT )g¡ `T ¡ `H

`T + `H
¹fy)dt (30)



where ¹fy can be obtained from (4) and (5),

¹fy = FH + FT ¡ (mT +mH)g: (31)

Using (30) as the force feedback input, we can ensure
the stability of the body part in the same way.

Theorem 2 For the dynamical system (1), let ` =
`T+`H
2 and consider the control input given by (17) with

(12) and (30). If the feedback gain Kd, Kp, and Kf

satis¯es the inequalities (18) - (20), then µ = µf be-
comes the local asymptotic stable equilibrium point.

Stationary posture
In the stationary state, ankle joint angle µ converges

to µf when using the torque input (17). This station-
ary posture is not determined until the environmental
conditions ® and ¯ are given. At this posture, the mo-
ment of gravitational force and external force around
the ankle joint are balanced. In short, the body part
is oriented to the direction of the resultant force of the
two, as shown in Fig. 2. For example, the body stands
upright if no external forces are exerted. This posture
has the advantage of requiring only a small amount of
torque to maintain it, and so is more e±cient from the
energetic point of view.
Analyzing the stability of control law (17), we lin-

earized the nonlinear motion equation. Thus, the con-
dition µ » µf is required. This condition implies that
the external force does not suddenly change in an im-
pulsive manner. We can estimate, using (18), the mag-
nitude of the acceptable impulsive external force. This
indicates that the posture can adapt to large changes
of external force, if the change is slow enough to con-
sistently satisfy (18),

3 EXPERIMENTS

Setup
We design a simple robot for the experiments. This
robot consists of a body part and foot part, as modeled
in Fig. 1. The body is 0:55(m) height and the foot
length is 0:12(m). It possesses a DC motor at the ankle
joint, which moves the body part within the saggital
plane. The ankle joint angle is detected by the encoder
built in the motor. In addition, four small loadcells
are attached on the corner of the sole, as shown in
Fig. 3(b). The ground reaction forces FT or FH are
computed by adding the sensor output from loadcell
No. 1 and No. 3, or No. 2 and No. 4. To adjust the
position of the COG, a 0:42(kg) weight is put at the
middle of the body part. The total weight of the robot
becomes about 1:11(kg).

Results
We ¯rstly put the robot on the horizontal plate. We,
then, lifted one side of the plate by hand in order to
make and maintain a slope. After about 10(s), we
returned back the plate to be the horizontal position.

(a) Overview.

(b) Four loadcells on the sole.

Figure 3: A designed robot

The torque input was computed every 1(ms) based on
the ankle joint angle as well as on the ground reaction
forces by using (17). The feedback gain was set as
Kp = 2:5, Kd = 1:5, and Kf = 0:01.
The postures at several stages are shown in Fig.

4. As shown, the posture was adjusted adaptively ac-
cording to the slope angle. Figure 5 illustrates the
data regarding this experiment. The change in an an-
kle joint angle is depicted in Fig. 5(a). When the
plate was tilted, the ankle joint was settled at approxi-
mately 0:3(rad). On the other hand, it was near 0(rad)
after the plate was re-leveled. Figure 5(b) shows the
controller outputs ¿ , ¿µ, and Kf¿f . While the slope
ankle was maintained, the controller outputed a non-
zero value (see the graph of ¿ around 10(s)) owing to
the friction of reduction gears. However, it will go to
zero if slope is maintained for enough longer time. The
changes of ground reaction force FT and FH are shown
in Fig. 5(c). This indicates that the posture was ad-
justed so that the di®erence of the ground reaction
force becomes small.

4 DISCUSSION

Formalization in muscle system
Using a PD and force feedback control, we can not only
stabilize a body part, but also realize adaptive posture
adjustment with respect to a speci¯c environment, i.e.,
constant external force. In this, position/velocity feed-



(a) At the start.

(b) On the tilted plate.

(c) At the ¯nal.

Figure 4: Posture changes by slope angle.

back is essential for stabilization, as mentioned in Sec.
2. However, the torque generated by PD control, ¿µ
in (12), can be replaced mechanically by spring and
damper. Such a mechanical system does not need ex-
pensive sensors, such as encoders or tachometers. For-
tunately, a stable posture µ = µf does not depend on
an equilibrium point of the spring µ0, which implies
that we can set up the spring without rigid equilib-
rium point adjustment. In this way, it is quite possi-
ble to construct a posture control law using only force
feedback.

(a) Ankle joint angle µ.

(b) Output of controller.

(c) Ground reaction force FT and FH .

Figure 5: Experimental result

In the case of human posture control, muscles play
the roles of not only actuators but also springs and
dampers. It is well-known that muscles have the elas-
tic and viscous properties which increase with muscle
activity. A bilinear muscle model represents this prop-
erty well [6]. Using this model, the force generated by
°exor Ff and extensor Fe are described as

Ff = uf ¡ kufxf ¡ buf _xf ; (32)



Fe = ue ¡ kuexe ¡ bue _xe: (33)

Here, uf and ue denote muscle activities, and xf and
xe are displacements from natural muscle length. The
°exor and extensor are distinguished by the subscripts
f and e. Elasticity and viscosity, which are assumed to
be the same in both muscles, are in proportional to the
muscle activities with the positive constants k and b,
respectively. Put the moment arm of °exor and exten-
sor to the same value, i.e., `m, the muscle displacement
is denoted approximately by

xf = `m ¢ µ; xe = ¡`m ¢ µ; (34)

and the muscle torque becomes,

¿m = `m ¢ (Ff ¡ Fe) (35)

= `m ¢ fuf ¡ ue ¡ (uf + ue)(Kµ +B _µ)g;

where K = k`m and B = b`m. It should be noted that
(35) is described as the same form as (17).
To determine the joint torque ¿m, we have to specify

the activities of °exor and extensor, uf and ue. Using
force feedback, the di®erence uf ¡ ue should be deter-
mined as

uf ¡ ue = Kf

`m
¿f : (36)

On the other hand, the elasticity and viscosity of the
ankle joint, can be adjusted by the addition uf +ue so
that (18) - (20) hold. Such muscle activities satisfying
these two constraints ensure the stability of the posture
control. This implies that, because of the elasticity
and viscosity of muscles, PDF control can be achieved
based on only force feedback information. Actually,
we might observe where the weight is placed on the
feet and make adjustments in this point of view, rather
than place the ankle joint angles in its desired position,
(i.e., the position feedback).

Application to multi-link structure
This control law indicates a method of determining
the torque of the ankle joint based only on the local
feedback of the ankle joint angle and ground reaction
forces. This is equivalent to the ZMP control including
external force. Usually, the concept of ZMP is utilized
in motion planning of body parts in order to maintain
the contact between the sole and °oor [3]. Some studies
have measured the actual ZMP using force sensors [1],
and controlled it in a desired position [2]. However,
the resultant movement of ZMP has not been clari-
¯ed mathematically. In this paper, we show the local
stability of the control law and its ¯nal posture theo-
retically, although it is in the realm of static balance
control.
This control law is also applicable to standing pos-

ture control in a multi-link system on condition that
changes in the link angles slowly alter the entire body
posture. Then, the body part in Fig. 1 is regarded as
a shank, and external forces are regarded as the force
from the upper parts of the system, i.e., the thigh,

trunk, arms and so on. In this case, we should newly
take torque from the upper part into consideration.
However, we can deduce the similar analytical result
as that shown in Sec. 2.

5 CONCLUSION

In this paper, we considered human adaptive behav-
ior as it regards standing posture control. Focusing
on the ground reaction force, we proposed a new con-
trol law based on PD and force feedback control. We
next discussed the possibility of a posture controller
that uses only force feedback, and considered a human
control mechanism in regard to the elastic and viscous
properties of muscles. We performed robot experiment
whose positive results indicated the controller's great
applicability to the control system of a legged device.
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