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Abstract 

Visual information process in the biological systems 
is performed simultaneously and in parallel at each 
neural unit. That is, Q global task with no supervi- 
sor is achieved by the interaction among Q lot of sub- 
systems. I n  this sense, the visual process has a share 
of the common functional strzlcture with ‘Autonomous 
Decentralized Systems’ which is attracted much atten- 
tion in the fields of the system engineering. 

In the present paper, we attempt to design a pic- 
torial pattern recognition system based on the concept 
of the autonomous decentralized system. The local in- 
teraction am.ong subsystems is described by reaction- 
digusion equations, in which each subsystem utilizes 
only the neighboring information around itself. 

1 Introduction 

The scientific technology has made our labor easy 
and able to be done efficiently. Consequently, ma- 
chines with developed technologies have taken the 
places of the human at some aspects. But a number of 
machines are still inferior to the human in adaptability 
and flexibility. In these days, it is much required to 
study the mechanism or methodology which realizes 
adaptive and flexible mechanisms or machines. ‘Au- 
tonomous Decentralized Systems’ is one of the promis- 
ing candidates referring to the adaptation to varying 
or unpredictable circumstances. The autonomous de- 
centralized system is a system in which a functional 
order over the entire system is generated by coopera- 
tive interactions among its subsystems, each of which 
holds its own autonomy to be able to control a part of 
the states of the system. 

It is well known that biological system possesses 

such an autonomous decentralized characteristic. In 
fact, it is capable of self-organizing various kinds of 
functional order by autonomous coordination of many 
system elements. For example, it is known that in hu- 
man memory, memorization and recall are caused by 
cooperation of many neurons. Since many neural cir- 
cuits can change the weights of the synapses through 
the learning, great number of memory patterns corre- 
sponding to the various purposes are able to be formed 
flexibly. Further it is able to consider that artificial 
neural network is one of the autonomous decentral- 
ized structure. Then it is important to define explic- 
itly the relationship between the interaction among 
subsystems and the order of the entire system. 

As a model of human memory, H.Haken proposed 
the way to design the auteassociative memory (see 
section 2.1) by synergetic computing, where the re- 
calling patterns are described by the differential equa- 
tions and each stable state of the system corresponds 
to the memorized picture respectively ([2], [4], [5], [SI). 
However the pictorial pattern data are represented as 
a vector data of pixel values, which are picked up in or- 
der from the picture and arrayed in one row. Since the 
two-dimensional connections have been lost, the recog- 
nition process requires the global information. Many 
other methods are proposed, e.g., an associative rnem- 
ory by use of neural network [8], an orthogonal projec- 
tion ([9], [lo]), ordinary serial processes with feature 
abstract and so on. However all of them can not be 
realized without utilizing the global information over 
the pictures. 

The present paper proposes a the model of the hu- 
man memory based on the concept of the autonomous 
decentralized system. Especially, we aim to realize the 
recalling process merely by the local interaction among 
the subsystems. In our method, the interactions is 
performed by the diffusion which is done in parallel. 
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Therefore, the local operation makes the recognition 
rapidly similar to the visual process in the brain. 

2 Pictorial Pattern Recognition Sys- 
tem 

2.1 Fundamental Ideas 

In the present paper, it is shown how to design the 
pictorial pattern recognition system in view of the au- 
tonomous decentralized system. The recognition sys- 
tem should be composed of many subsystems, and the 
interaction among subsystems regulate the global or- 
der of whole system. At first, we divide the memorized 
or inputted pictures into many parts. Then every part 
(pixel unit) behaves of themselves and interacts mutu- 
ally. Finally the global order is formed spontaneously, 
which corresponds to the recall of the memorized pic- 
ture. 

Here we adopt the method of auto-associative mem- 
ory [2], which is explained as follows. Let's assume 
that a couple of data (21, yl), . . ., (xn,yn) are stored 
in the memory. The associative memory is the system 
which outputs the data yi for the input xi. The asso- 
ciative memory is called 'auto-associative memory' in 
the case that the output data are equal to the input 
data, i.e., yi = xi. The auto-associative memory out- 
puts the most similar data to the input pattern in the 
memory. 

Now first let's use the ideas of the orthogonal pro- 
jec t ion. 

When the system receives a test pattern (input pic- 
ture) q, it is decomposed to the component of each pro- 
totype pattern (memorized picture) V k  (k = 1,. . .,M; 
M is the number of the memorized pictures) and their 
residue w such as 

Here, it should be noted that q, vk(k = 1 , .  . . , M) and 
w may be either vector or function generally. How- 
ever, throughout this section, q and U) are defined as 
scalar functions, for example q ( x ,  y) or vi(z, y), which 
denotes the gray level of the pixel located at the coor- 
dinate (z ,y)  on the face of the picture. For the sake 
of simplicity, we assume that q(x,y) and vi(z,y) are 
all C". The ak denotes the weight of the prototype 
patterns which the test pattern includes. 

To begin with, we construct the system which out- 
puts only the projected component on the subspace 11 

spanned by the memorized patterns, i.e. 

In order to output i(x, y), the system must know the 
weight ak. These ab can be calculated by use of the 
adjoint function ut such as 

where R denotes the whole picture (IlRll < CO). The 
adjoint function U,!' satisfies 

M 

- I  
and 

where bij is Kronecker's delta. 
Eq.(4) means that the adjoint function vt  is on the 

function space II spanned by the prototype functions 
v i .  Accordingly the component of the test function 
except the function space II can be deleted. Eq.(5) 
means that every adjoint function U,!' orthogonizes to 
each vj(j # i )  and the product with vi is unit. 

Considering from the view of the autonomous de- 
centralization, the system should not use the global 
information such as the function values of all the co- 
ordinates in the picture. When we calculate eq.(3) 
directly, we must utilize the global information in the 
form of function values. For the use of the local infor- 
mation only, we introduce the diffusion which makes 
each pixel value converge to the correct integral value. 

Accordingly, the problem turns as follows. When 
the function f is defined on the bounded set R, we may 
find a procedure to calculate the following equation 

fe = J fda  n 

by the local operation. If we put f = vi+(z,y)q(z,y), 
da = dzdy, eq.(6) changes to  eq.(3). For the sake of 
simplicity, first we assume that the function f has only 
one argument. 

Here, we consider how to calculate the integral in 
the right hand side of eq.(6) by the diffusion on the 
picture plane. The integral calculation by the diffu- 
sion will become possible by introducing some local 
potential function ui whose minimum corresponds to  
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the correct integral value. We assign the local poten- 
tial function as 

where f: is the estimate of the function value f: at 
the coordinate xi, A denotes a pixel width between 
x; (xi-1) and zi+l (xi). As we make the function 
f evolved temporally at each pixel according to this 
potential function, we obtain 

4 1 f(%i+l) - 
9 A  A 

= -Xi-( 

where, X i  is a parameter which determines the rate 
that f(x;) converges to fc.  As A goes to 0, eq.(8) can 
be written as the diffusion equation. 

(9) 

where X is a diffusion constant. 
Before putting use to the diffusion on the picture 

plane, we must initialize the value fi at each coordi- 
nate, which corresponds to the local estimate of the 
integrated value of eq.(6). That is, in each coordinate 
the approximated value fj is locally estimated by use 
of the information of neighboring pixels. Here we give 
as follows. 

Eq.( 10) means that the estimate of the integral value 
is given by the average of the pixel values around. 
It is easy to understand that eq.(lO) is appropriate, 
because the average of the area approximated by the 
squares is given by eq.(lO). 

In the initial state each estimate f i  has a different 
value in each coordinate. But after the evolution in 
time according to eq.(9), they become to take the same 
values fc (see Fig.l), which is obvious from the fact 
that the potential function eq.(7) takes the minimum 
at fc. 

I I I 

b 
X 

I 
I X 

Fig. 1 Averaging by diffusion. 
Finally we must mention about the boundary con- 

dition of eq.(9). To calculate the integral correctly, 
we have to give the boundary condition to eq.(9) such 
that the area surrounded by function f and x-axes can 
not change. For the simplicity we regard the bound- 
ary in the left and right side of the area as the same 
throughout this article, which keeps the area constant. 

It is easy to extend eq.(9) to two-dimensional case. 
In that case, it is possible to delete the boundary con- 
dition by considering the picture as two-dimensional 
torus virtually. 

The system outputs the picture using the values 
calculated according to eq.(9) as 

Since every ai(z ,  y;t) converges to the value a; given 
by eq.(3), q ( x ,  U; t) also converges to 

It is important that eq.(9) is calculated only by the 
local operation. 

of eq.(2). 

2.2 The System with Reaction-Diffusion 
Equation 

There are some problems in the algorithm men- 
tioned in the previous section. For example, 

e It is necessary to compute the adjoint function 
of each memorized function (picture) so as to set 
the initial value at every location on the picture. 
Then we have to know all the functions first to 
calculate the adjoint functions. 

0 The output pattern does not include the compo- 
nent except the function space I1 spanned by the 
memorized pictures. Then it can converge to the 
function space II, but cannot converge to one of 
the memorized pattern. It means that this system 
doesn’t have the ability to get rid of the noises 
in the function space spanned by the memorized 
pictures. 
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It should be tried to design such a system that can 
solve those problems. For this purpose, we might add 
the reaction term to the diffusion equation. Then we 
obtain the reaction-diffusion equations that describe 
the dynamic property of the system. 

2.2.1 Active Elements and Phase Initialisa- 
tion 

Here we adopt an idea of ‘active elements’ to explain 
our ideas easily. The active element is assigned to 
each pixel on all the memorized pictures by one-to- 
one. The elements are arranged by the same order 
as the pixels to which the elements are assigned, and 
then the plane made from the elements is obtained. 
It is trivial that the number of the planes is equal 
to that of the memorized pictures. To refer to these 
planes, the term ‘element plane’can be used. Further, 
the term ‘group’has to be defined. The term ‘group’ 
represents a set of the elements that is located at the 
same coordinate on each element plane (see Fig.2). 

It is assumed that the active element has its own 
dynamic property. To put it more concretely, these 
elements have two stable states. The value in the sta- 
ble state are supposing to be 0 and 1. In addition, 
the state of element is represented by the value from 0 
to 1. The value corresponding to the state of element 
is called here the term ‘phase’. When the test and 
memorized picture are compared in microscopic, i.e., 
at the pixel size level, the phase is equivalent to the 
index that indicates a kind of the distance between the 
test picture and the memorized picture to which each 
element is assigned. If two pictures are the same one, 
the phase will take the value 1. On the other hand, 
if it is concluded that two pictures are not, the phase 
will take the value close to 0. 

What has to be noticed here is that when a test pat- 
tern is inputted, the initial value of the phase are de- 
cided uniquely from the comparison at the pixel level. 
Then the phase changes dynamically to settle in the 
stable state suitable for the inputted pattern. (The 
latter phase dynamics is taken up in the next sec- 
tion.) As for the former, the phase is initialized by 
the following equation, 
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notes the coordinate of 
the pixel on the picture, t 
denotes the time, a k ( t , t )  
denotes the phase of the 
element at the time t, 
which is assigned to the 
pixel located at the coor- 
dinate < on the k-th pic- 
ture. The parameters a 
and c are constant. In 
this paper, these cr and c 
are set to 4 and 400 re- 
spectively. The graph of 
eq.(12) is shown in Fig. Fig. 2 
3. 

Element Planes 
and group 

-40 -20 20 40 
distance between pixel values 

Fig. 3 The function that initialize the phase of 
the element. 

Eq.( 12) is equivalent to the spatial low-pass filter. The 
constant c corresponds to the parameter that deter- 
mines the spatial range of the filter. If the difference 
between pixels is large, the phase will be set to 0. Thus 
the characteristics of the low-pass filter gives the sys- 
tem robustness against the high-frequency noises. 

2.2.2 Phase Dynamics 

As to the dynamic property of the global set of active 
elements, the following two macroscopic factors are 
necessary to achieve the pattern recognition. 

(1) After evolution in time, all elements in the same 
element plane take the same phase value. 

(2) In every group, only one element takes the phase 
value 1 and all the others take the phase value 0 
at the stable state. 

To make the system settle in the stable states where 
the above two conditions are satisfied (Fig. 4), the dy- 
namics of the active element is defined by the reaction- 
diffusion equation in the following way. 



Here, 

k ’ f k  

(14) 

where, the parameter D is a diffusion coefficient and 

First, let’s examine the meaning of the first term 
in the right hand side of eq.(13). If we neglect the 
second term at eq.(13), we can interpret the equation 
as a gradient system whose potential function V is 
defined by eq.(14). The potential function V makes 
the largest a k  in initial state converge to the value 1 
and all the other an’s (n # k) converge to the value 0 
(see Fig. 5). Consequently, it leads to the state that 
the condition (1) is satisfied. 

Secondly, we would mention the second term in the 
right hand side of eq.(13). As shown in the section 
2.1, the diffusion term has an ability to make the value 
uniform (see Fig. 5). The dynamics with only the dif- 
fusion term, i.e., without the term of potential func- 
tion, all the a k ’ s  in the same element plane takes the 
same value as the phase, which means the condition 
(2) becomes to be satisfied. 

By selecting the diffusion coefficient appropriately, 
we can make the system to satisfy both the condi- 
tions at the stable state. The diffusion coefficient D 
controls the trade-off between the reaction and the dif- 
fusion. Generally speaking, the above two conditions 
are achieved by making the diffusion act faster than 
the reaction. Namely, we can select the diffusion co- 
efficient D larger. 

a k  = a k ( ( i t ) -  

the memorized patterns. If above two conditions are 
satisfied in the stable state, the correspondence be- 
tween the output and the memorized picture becomes 
possible by the reconstruction of the output patterns 
as 

M 

U ( k ,  z>aa(C,t) 

ak(Ett)  

P(C7t) = k = l  M 1 (16) 

k = l  

In eq.(16), each phase plays a role of weight at the 
calculation of the summation in every groups. 

3 Simulations 

In this section we show some simulation results. 
The simulations based on the two different method 
are shown, i.e., one is the only diffusion equation and 
the other is by the reaction-diffusion equation. 

The system memorizes five pictures in the size of 
100 x 100 pixels with the brightness from 0 to 255 in 
advance (see Fig. 6). 

And we set the diffusion coefficient to 200. 

3.1 Recalling from the picture with high- 
frequency noises 

First, as shown in Fig.7(a), we use the picture 1 
with noise. In this example all the pixels were affected 
by uniformly random noise whose maximum ampli- 
tude is 40 and the average is 0. 

The output converges to almost the same picture 
as the original picture without noise as shown in Fig.7 
(b), (c). It shows that our methods have robustness . I . .  I 

for the random noises of average 0. 

3.2 Recalling from a couple of mixed pic- 
t ures 

In order to examine the removability of the noise 
in the space spanned by the memorized pictures, the 
picture which is made from mixing the picture 2 and 
5 at the ratio of 1:l is offered to both systems (see 
Fig.8(a)). 

As is known from the way of construction, the out- 
put picture becomes equivalent to the input pattern 
in the system with diffusion equation (see Fig.8 (b)). 

Fig. 4 Stable state Fig. 5 Interactions On the other hand, as shown in Fig.8,(c), the out- 
put by the reaction-diffusion equation converges to one 
of the memorized pictures. From this, it is known that 

............... 

.............. 

Finally, let’s consider how to reconstruct the output 
pattern. The output pattern has to correspond one of 
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the noise in the space spanned by the memorized pic- 
tures can be removed. In this example, since the ratio 
of mixed pictures is same, the output converge to ei- 
ther of both at the same probability. If the ratio is 
different, for example the ratio 6:4, then the stronger 
one will be recalled. 

(a) Input picture 

3.3 Recalling from a part of the picture 

To examine the ability of association, we offer the 
part of the picture 2 as the input picture to both sys- 
tems (see Fig.S(a)). 

As shown in Fig.9, the output picture in the system 
with only diffusion equation includes the components 
other than the picture 2 (Fig.9 (b)), while the output 
in the reaction-diffusion equation converges to the pic- 
ture 2 correctly (Fig.9 (c)). 

50 steps 50 steps 

100 steps 100 steps 

Picture 1 Picture 2 

500 steps 500 steps 

Picture 3 Picture 4 

1143 steps 

(b) Diffusion equation 

Picture 5 
Fig, 6 Five memorized pictures. 

1396 steps 

( c )  Reaction-diffusion 
equation 

Fig. 7 Simulation results for the input with 
high-frequency noise 
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(a) Input picture 

50 steps 

100 steps 

500 steps 

50 steps 

100 steps 

50 steps 

100 steps 

500 steps 500 steps 

1206 steps 

(b) Diffusion equation 

2481 steps 

(c) Reaction-diffusion 
equation 

50 steps 

100 steps 

500 s tem 

1226 steps 1317 steps 

( b )  Diffusion equation (c) Reaction-diffusion 
equation 

Fig. 8 Simulation result for t,he input, consisted of a Fig. 9 Sirnulation result for partially given input. 
couple of pictures 
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4 Conclusion [9] Kohonen , “Representation of associated pairs by 
matrix operators,” IEEE lhns . ,  C-22, pp. 701- 

In this paper we proposed the pictorial pattern 
recognition method based on the concept of the au- 
tonomous decentralized system. As the results we can 
point out that the recognition system is constructed 
by the parallel distributed manner with less connec- 
tions. Further the system with nonlinear interactions 
has the ability to remove the noises included in the 
space spanned by the memorized pictures, while the 
associative memory by use of the orthogonal projec- 
tion cannot remove it. 

702, 1973. 

[lo] K-Matsuoka, “On Various Structures of Orthogo- 
nal Projection Type of Associative Network,” IE- 
ICE Zhns . ,  Vol.J73-D-IIl No. 4, pp. 641-647, 1990 
(Japanese). 
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