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Abstract— When grasping an object, friction forces are some-
times utilized effectively. This friction forces allows us to ma-
nipulate the object to various directions. Regarding such a
grasped object posture, we reported an analysis on the 2D-
space grasping with two contact points. Selecting the square
sum of the contact forces as an evaluation function of the object
posture, we concluded that the optimal posture is the one where
the midpoint of two contact points and the center of mass of
the object align vertically. In this analysis, however, the friction
condition is not taken into account, and thus this result is applied
only to the grasp by use of fixtures, not to the one with frictions.
In this paper, we aim at extending this result into the grasp
with frictions. Especially, we analyze a grasp of circular object
in the 2-D space in a numerical manner, and discuss the physical
meaning of the optimal posture.

Index Terms – Grasping, Friction force, Object direction, Opti-
mization, Contact force

I. INTRODUCTION

Grasping is a fundamental action in some tasks such as
conveying, assembling, and manipulating objects. The grasp
in such tasks is sometimes achieved using frictions between
the object and the fingers. From the aspect of the stability,
the power grasp [1] or the form closure grasp[2] is superior.
However, a reason why we treat the grasp with the frictions
here is that it has a possibility to manipulate the object speedy
and skillfully.

The grasped object can take various posture, i.e., the ma-
nipulator can change the direction of the end-effector with
grasping the object. Actually, we often encounter a case
where we must maintain the posture of the object to a given
directions: For example, fixing a mechanical part to machinery
using screws, we should keep its posture constant. But, in some
other cases, especially during the transportation or conveying
task, it is possible to select an arbitrary posture of the grasped
object. Namely, the direction of the grasped object should be
one of the design factors in the motion planning. However, the
optimization of the grasped object is not discussed so much
in the previous studies.

The optimization of the grasping has been reported using
various method [3], [4], [5], [6], [7], [8], and many optimizing
factors for grasping have been investigated such as position of
contact points, internal forces, finger joint torques and so on
[9]. Especially, the selection of contact points is significant

for automatic grasp by a robot hand or a manipulator, and so
many studies treat this problem[10], [11], [12]. However, the
position of the contact points is often restricted due to task
requirements or size of the hand, and thus contact points are
not always be chosen freely. Taking it into the consideration,
we start discussion with an assumption that a prehensible set
of contact points are assigned. Finger joint torques [13] might
be another important optimizing factor. However, it depend on
the structure of the end-effectors. We here select the posture
of the grasped object as an optimizing factor, because it is a
property specific to the grasped object and independent of the
structure of end-effectors.

In summary, we here consider the following problem:
• Find the optimal posture of the object grasped with fric-

tions under the condition that contact points are assigned
with which the object is grasped stably.

As an evaluation of the object posture, we adopt the norm of
contact force vector. Here, the contact force vector is a vector
whose element is a component of the contact forces, and the
contact force is a force acting at the contact point and consists
of the normal force and the friction force. To maintain the
object position statically during the grasp, the contact forces
must compensate the gravitational effect of the object. Then,
small amount of contact forces is effective. In addition, smaller
contact forces reduce the possibility for object to be broken.
Thus, an evaluation is defined as the norm of contact forces.
Accordingly, the problem is to find the object posture such
that minimizes the square sum of the contact forces.

II. 2D GRASPING OF A CIRCULAR OBJECT

A. Assumptions

Throughout this paper, we set the following assumptions.
• Task space of grasping is 2 dimensional where the

gravitational direction is included.
• An object is rigid and homogeneous.
• The number of the contact points is two.
• The type of the contact is a point contact with friction

[14].
• At the contact points, the shape of the object is smooth.

Then, two contact points is the minimal number to grasp an
object in the 2D space. Indeed, more contact points make it
easier to grasp it. However, if the object can be grasped with
less contact points, an extra end-effector (finger) does not be
prepared, or can be utilized for the subsequent manipulation.
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Fig. 1. Grasping of a circular object.

B. Formulation

This paper is the first step of the analysis for the object
posture optimization in the grasping with friction. Thus, we
take an circular object as the simplest example.

The circular object is homogeneous with radius r implying
that the center of circle is also center of mass of this object.
As shown in Fig. 1(a), two contact points are set on the object
surface whose relative angle is 2φ (φ �= 0) at the center.

The problem is to find postural angle of object from the
gravitational direction that minimize the square sum of the
contact forces. The problem becomes accessible by means of
introducing the object coordinate frame as shown in Fig. 1(b).
In the object frame, the origin is set to the center of mass, and
y axis is set in the direction to the midpoint of two contact
points. Then, contact points are denoted respectively by

p1 =
[

r sinφ r cos φ
]T

(1)

p2 =
[ −r sin φ r cos φ

]T
. (2)

The object posture in the task coordinate frame is expressed as
the relative direction of the gravity in the object frame, which
is denoted as the clockwise angle θ from the y axis. Because
of the symmetry, we can restrict the range as 0 < φ ≤ π/2.

The balance of the forces and moments in the stable
grasping are described by the equation,

LF = M (3)

Here, L is a grasp matrix given as

L =




− sin φ − cos φ sin φ cos φ
− cos φ sinφ − cos φ sin φ

0 r 0 −r


 (4)

F is a unknown contact force vector whose components are
the normal force Ni and friction forceFi (i=1,2), i.e.,

F =
[

N1 F1 N2 F2

]T
(5)

and M is given as

M =
[

Mg sin θ Mg cos θ 0
]T

(6)

representing the effect of the gravity, where M is a mass of
the object and g is a constant of gravitation.

The solution of the equation (3) can be written as

F = F T (θ) + αF N (7)

where
F T (θ) = L†M(θ) (8)

L† is a pseudo-inverse matrix of L, F N is a unit vector in the
null space of L, i.e.,

LF N = 0 (9)

and α is a scalar corresponding to the amount of the inter-
nal forces. After some calculations, we obtain the following
equations for F T (θ) and F N :

F T (θ) =
Mg

2




− sin θ
sin φ − cos φ cos θ

sin φ cos θ
sin θ
sin φ − cos φ cos θ

sin φ cos θ


 (10)

F N =
1√
2




sin φ
cos φ
sin φ
cos φ


 (11)

Among the solutions of the equation (3), we must select the
one which minimizes the following evaluation function V

V = F T F (12)

Substituting (12) by (7), we obtain the following equation

V = ||F T (θ)||2 + α2||F N ||2 (13)

The problem here is to find θ that minimize (13)

C. Our previous analysis

In (13), the variable θ and α are separated to different terms.
Thus, in our previous paper [16], we optimized it with respect
to each variables. Regarding to α, the smaller it is, the better
this evaluation function becomes. Thus, we tried to minimize
(13) with respect to θ. Our mathematical analysis found that
the evaluation function takes minimal value at the posture
where the midpoint of the two contact forces and the center of
mass of the object align on the gravitational lines. This result
can be generalized to the 3D grasping of the convex object
[16].
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Certainly, this result is valid in the condition that contact
force can be generated to any directions, e.g., for the grasp
using fixture. However, it cannot be applied to the grasp with
friction without modification, because the friction conditions
as well as unilateral condition of normal force are not con-
tained as the coustraints. Probable, the α would be a function
of the θ due to these constraints.

From this point of view, we set the conditions for stable
grasping with frictions mathematically. Next, we consider the
internal force α that satisfies these conditions. Then, using this
α, we obtain the optimal posture that minimize the evaluation
function (13).

D. Stable Grasp Conditions

To ensure the meaningful stable grasp with frictions, three
types of the conditions are required: unilateral condition
of normal reaction force, pinching-up condition and friction
condition.

1) unilateral condition of normal reaction force: The reac-
tion force from the object is generally unilateral. The reaction
force can push the fingers, but cannot pull them. This condition
is described as follows.

N1 > 0. (14)

N2 > 0. (15)

2) pinching-up condition: When grasping an object with
frictions, the friction forces may play an important role for
compensating the gravity of the object. Indeed, we can con-
sider a case in which the object is placed on the two finger
tips stably. Such a case is not interesting to us, since we
cannot manipulate it by such a method. To manipulate it, the
object is tightly pinched by two fingers. In order to exclude
the former case, the following conditions are imposed to the
friction forces.

F1 > 0. (16)

F2 > 0. (17)

We call them pinching-up conditions.

3) friction condition: To grasp the object stably, the fingers
should not slip on the object surface. These conditions are
described as follows:

|µ1N1| > F1. (18)

|µ2N2| > F2. (19)

Here, µ1 and µ2 is a friction coefficient at each contact point.

E. Approach

To summarize, we can describe the problem here as follows:

• Find the postural angle θ such that minimize the eval-
uation function (12) under the equality condition (3) as
well as the inequality condition (14) - (19).

The solution will be obtained using Lagrange method. La-
grange function is constructed using Lagrange multipliers and
then induces the Karusch-Kuhn-Tucker (KKT) conditions from
the Lagrange function. The KKT conditions can be solved
analytically by some computer mathematical tools. However,
the outputted solutions are so complex and are classified by
so many combinations of the case conditions that we cannot
understand the significant meaning of the solutions.

Because of this reason, we take an another approach as
follows. Firstly, we solve the equation (3) in the form of (7).
In the section II-C, α was put to zero, considering that the
smaller the internal force α provides the better evaluation.
However, it is possible that the α depends on the posture θ
due to the stable grasp conditions (14) - (19).

Thus, we firstly calculate the α that satisfies force balance
condition (7) and one more condition: N1 = 0, N2 = 0,
F1 = 0, F2 = 0, |µ1N1| = F1, and |µ2N2| = F2. We put
such α, respectively, to α1, α2, α3, α4, α5 and α6, which will
be expressed as a function of the θ. To satisfy the conditions
(14) - (19), the feasible α in the solution of (7) must be larger
than all the αk(θ) (k = 1, · · · , 6) at every θ value. Therefore,
we select the maximal αk(θ) for each θ, which is denoted as
ᾱ(θ) This ensures α ≥ ᾱ ≥ αk (k = 1, · · · , 6). Finally, we
substitute (7) by these selected ᾱ(θ) in each corresponding
range. In this way, we can obtain the solutions of (7) that also
satisfy all the stable grasp conditions. Using this solution, we
minimize the evaluation function (12) with respect to θ.
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Fig. 3. Numerical analysis for φ = π/3.

F. Mathematical Analysis

Following the above approach, we try to solve the prob-
lem analytically. The solution that satisfies each stable grasp
condition is given as follows:

α >
Mg (sin θ + sinφ cos φ cos θ)√

2 sin2 φ
≡ α1 (20)

α >
Mg(− sin θ + sin φ cos φ cos θ)√

2 sin2 φ
≡ α2 (21)

α >
Mg(sin φ cos θ)√

2 cos φ
≡ α3 (22)
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Fig. 4. Numerical analysis for µ1 = µ2 = 1.

α >
Mg(sin φ cos θ)√

2 cos φ
≡ α4 (23)

α >
Mg

(
sin2 φ cos θ + µ1 sin θ + µ1 cos φ cos θ sin φ

)
√

2 sinφ (µ1 sinφ − cos φ)
≡ α5 (24)

α >
Mg

(
sin2 φ cos θ − µ2 sin θ + µ2 cos φ cos θ sin φ

)
√

2 sinφ (µ2 sinφ − cos φ)
≡ α6 (25)

Here, we use the relation cos φ > 0, sin φ > 0, µ1 sinφ −
cos φ > 0 and µ2 sinφ − cos φ > 0.
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Fig. 5. Numerical analysis for µ1 = µ2 = 1, φ = π/3.

Among these αk (k = 1, · · · , 6), we have to select the
maximal one at every θ. To simplify the calculation, we re-
examine the conditions (14) - (19), here. In order to satisfy
three inequalities N1 > 0, F1 > 0 and |µN1| > F1, it is
sufficient that only two inequalities F1 > 0 and µ1N1 > F1

hold. It is the same for N2 > 0, F2 > 0 and |µN2| > F2. Thus,
we consider the only four inequalities: F1 > 0, µ1N1 > F1,
F2 > 0 and µ2N2 > F2.

In addition, we examine the pinching-up conditions. This
conditions are used for excluding the situation in which the
object are just placed on the finger. This purpose is achieved
by restricting the range of θ. As shown is Fig. 2, restrict the
range of θ in −(π−φ) < θ < π−φ and then the gravitational
direction from the center of mass of the object does not pass
between two contact points. Accordingly, the object is not
placed on the fingers but grasped actively using contact forces.

In summary, to ensure a meaningful stable grasping, all the
conditions we have to consider are µ1N1 > F1 and µ2N2 >
F2 in the range −(π − φ) < θ < π − φ.

Although the stable pinching condition is simplified well,
the equations are still too complex to analyze. Thus, in the
next section, we introduce the numerical method to elucidate
the optimal solution.

G. Numerical Analysis

The internal force α that satisfies the force balance as well
as each stable pinching condition (14) - (19) is numerically
calculated. At first, fixing the position of the contact points,

3

20

10

-20

2
-30

0-2

30

-10

-1-3

0

1
Postural angle θ  [rad]

In
te

rn
al

 f
or

ce
 α

 [
N

]

α1

α6

α5

α4α3

α2
a

b

c

-1 320

800

-3 1

400

600

-2

200

Postural angle θ  [rad]

E
va

lu
at

io
n 

fu
nc

tio
n 

V
 [

N
2 ]

 

α4α3

α1α2

α5

α6

a

b

c

Fig. 6. Numerical analysis for µ1 = 1, µ2 = 1/
√

3, φ = 5π/12.

the effect of the friction coefficient is examined. The center
angle of two contact points 2φ is set to π/3, and the three
different values are set to the friction coefficient µ1 and µ2,
i.e.,

√
3, 1 and 1/

√
3 + ε. The results are shown in Fig. 3

where Mg is set to 10. The internal force α in the upper area
of all the curve αk (k = 1, · · · , 6) ensures the stable grasp.
According to the section II-F, it is sufficient to consider α5 and
α6 corresponding to the condition µ1N1 > F1 and µ2N2 > F2

respectively in the unshaded range −(π − φ) < θ < π − φ.
This fact is confirmed graphically from the Fig. 3.

Next, fixing the friction coefficient µ1 = µ2 = 1, the effect
of contact point position are examined. The three different
values are set to the parameter for contact position 2φ, i.e.,
5π/12, π/3 and π/4. The results are shown in Fig. 4, where
Mg = 10. The graphs similar to Fig. 3 are obtained.

Although the magnitude of the each graphs are different
in every conditions, the fact that two minimal points at θ =
−(π−φ) and θ = π−φ, as well as one local minimum point
at θ = 0 is commonly observed.

Secondly, the evaluation function (12) is computed for each
αk (k = 1, · · · , 6). At the first example, the parameters are
set as µ1 = µ2 = 1, φ = π/3 and Mg = 10. The upper
graph shown in Fig. 5 denotes the internal force α, which is
the same as the middle graph in Fig. 3 and Fig. 4. On the
other hand, the evaluation function is depicted in the bottom.
Among six curves, the only two graphs are significant in the
range −(π − φ) < θ < π − φ, i.e., the graphs calculated from
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α5 and α6. As the same as the internal force, there are two
minimal points a and c at the boundary and one local minimal
point b at θ = 0.

The next example is a case in which the friction coefficients
are different at two contact points. The results are shown in
Fig. 6. The upper graph denotes the internal force α, while
the bottom does for the evaluation function. The parameters
are set as µ1 = 1, µ2 = 1/

√
3, φ = 5π/12 and Mg = 10.

Compared to the condition in Fig. 4(a), only the µ2 is different.
Therefore, the graph of α6 solely varies. However, the value of
α6 is crucial for determining the minimum of the evaluation
function, because not only the internal force α but also the
evaluation function becomes asymmetrical as shown in Fig.
6(b). In Fig. 6, two minimal points a and c at the boundaries
and the local minimal point b between them are also observed.
It implies that the features of grasp with frictions do not
drastically change with small parameter deviation.

H. Physical meaning of minimal posture

Finally, the posture of the minimal point is investigated. It
is trivial that, at the minimal point a and c, one of the contact
points is positioned directly underneath of the center of mass
of the object, as shown in Fig. 7. However, they are not the
exact grasping we expected, since the object is just placed on
the one contact point. The solution we are interested in is the
one at the minimal point b. After some calculations, this is a
posture such as illustrated middle in Fig. 7. In this posture, the
intersecting point of the surface of two friction cone and the
center of mass of the object are aligned on the gravitational
direction.

III. CONCLUSION

In this paper, the optimal posture of the circular object
grasped with frictions is considered. As an evaluation, the
square sum of the contact forces is adopted. In addition to the
force balance condition, three other conditions are imposed
to ensure the meaningful stable grasp with frictions, i.e., the
unilateral condition of normal force, pinching-up condition
and friction condition. For numerical analysis, the internal
force necessary to satisfy the stable grasp conditions are
computed at first, and then the evaluation function is calculated
based on these computed internal force values. Comparing
these evaluation functions, one meaningful optimal solution is
obtained. Some analytical calculations reveal that this posture

is the one in which the intersecting point of the surface of two
friction cone and the center of mass of the object are aligned
on the gravitational direction. Although this result is derived
from the grasping of the circular object, we expect that it can
be extended to the general 2D grasping of the non-circular
object. This extension will be presented in the next paper.
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