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This paper addresses a biped balancing task in which an unknown external force is exerted, using the
so-called ‘ankle strategy’ model. When an external force is periodic, a human adaptively maintains the
balance, next learns how much force should be produced at the ankle joint from its repeatability, and
finally memorized it as a motion pattern. To acquire motion patterns with balancing, we propose a
control and learning method: as the control method, we adopt ground reaction force feedback to cope
with an uncertain external force, while, as the learning method, we introduce a motion pattern
generator that memorizes the torque pattern of the ankle joint by use of Fourier series expansion. In
this learning process, the period estimation of the external force is crucial; this estimation is achieved
based on local autocorrelation of joint trajectories. Computer simulations and robot experiments show
effective control and learning results with respect to unknown periodic external forces.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A kind of intelligent motor behaviors of animals is observed in
a learning of motion patterns by adapting to unknown environ-
ment. Even my pet dog, for instance, not only walks in my
cluttered house without tripping but also changes his walking or
running pattern according to the situation. Such behaviors are not
easy to achieve as robot behaviors, because, in conventional robot
controls, the motion patterns are programmed in advance by
assuming environmental conditions. The programmed robot
behaviors are not assured in unknown or variable environments.

Two types of abilities are found in the above dog behavior. One
is an ability to learn motions as a special pattern appropriate to a
steady environmental condition (walking is switched to running).
The other is to stabilize the posture or movement to deal with a
rapid disturbance from the environment (walking in the cluttered
house where foot placement may be slightly different at each
step). This paper treats a scheme of motor control and learning
from these two points of view.

To make the problem as simple as possible, the balancing
problem as shown in Fig. 1 is considered as an example. In this
situation, a human stands on a floor where the slope changes
periodically at a slow speed, e.g., on a large boat in the wild sea.
Normally, humans can adjust their standing position with respect
to the slope of the ground by changing the sway angle, in other
words, the joint angle of the ankle. This balancing method is
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especially called ankle strategy (Horak and Nashner, 1986),
although some other strategies, mechanisms or control methods
are proposed in the human standing (Winter, 1995; Alexandrov
et al., 1998; Rietdyk et al., 1999; Van Ooteghem et al., 2008) or
biomechanical/robotic model (Gorce and Vanel, 1997; Hof, 2007;
Mergner et al., 2009). In addition, if this situation continues for a
long time, humans can learn the operation of the ankle as a
periodic motion pattern based on this periodicity. The object of
this paper is how to achieve such a balancing behavior by artificial
machines like robots rather than to elucidate a neuronal mechanism
whereby humans accomplish such an adaptive behavior, although
the problem originates from a consideration of a control/learning
mechanism in the behaviors of biological systems.

Balance control methods are often discussed in the field of
robotics, especially for walking robots. Here, the main issue is
rather motion generation based on the zero moment point (ZMP)
(Vukobratovic et al., 1990), a point on the ground around which
the moment of inertial force and gravity are balanced. In this
method, reference trajectories of the joints or the body’s center of
gravity (CoG) are calculated in advance as a motion pattern so
that the ZMP is kept beneath the foot support. Then the
trajectories are reproduced by position control during actual
walking (Takanishi et al., 1989; Hirai et al., 1998; Mitobe et al.,
2001). On-line generation (Kajita and Tani, 1996; Nishiwaki et al.,
2002; Sugihara et al., 2002; Behnke, 2006) or on-line modification
(Huang et al., 2000; Wollherr and Buss, 2004; Lee et al., 2005;
Prahlad et al., 2007) of the trajectories have been proposed to
adapt to changes in environmental conditions. However, the
discussions of periodic pattern learning are not yet sufficiently
advanced to support the development of walking robots. As for
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Fig. 1. Balance control affected by periodic external force.

static balance, the stability of the upright posture is analyzed
(Napoleon and Sampei, 2002). The acquisition of biped dynamics
is described with a neurophysiological model (Nakayama and
Kimura, 2004). Reinforcement learning is applied (Borghese and
Calvi, 2003), also to a stand-up behavior that requires a balancing
task (Morimoto and Doya, 2001). Human static balance is
measured to clarify its adaptive characteristics (Nashner, 1976;
Priplata et al., 2002; Lockhart and Ting, 2007). Regarding to the
periodic motion learning, a method based on the controllers
containing oscillators, called by CPG, have been proposed (Nishii,
1999; Ishiguro et al., 2003; Ijspeert, 2008; Endo et al., 2008).
However, control and pattern learning schemes of periodic
motion based on the on-line balance have not been sufficiently
discussed.

Thus, this paper deals with a problem such as that in Fig. 1 that
contains both control and learning factors. We have already
proposed a control and learning method for a special case where
the period of an environmental alternation is given beforehand
(Ito et al., 2005). In this paper, this method is extended to the case
in which its period is also unknown. For this extension, estimation
of the period is required. After the concept of our control scheme
is explained in Section 2, a control and learning method including
period estimation is formulated in Section 3. In Section 4, the
effects of our scheme are confirmed by simulations, and it is
applied to the motion control of actual robot in Section 5. In
Section 6, concepts and assumptions in this paper are recon-
sidered and its advantages as well as remained problems are
discussed. Finally, this paper is concluded in Section 7.

2. Control and learning scheme for static balance
2.1. Strategy

One of our future goals is to apply the balancing and learning
method to the locomotion pattern learning. The walking is
periodic motion and thus the balance disturbances caused by
the inertial force of walking also become periodic. Thus, motion
pattern learning under periodic external force, such as in Fig. 1, is
compatible to the locomotion pattern learning and is applicable to
the design of the desired trajectories in the locomotion pattern.
Then, an irregular environment, such as seen in a cluttered house,
produces non-periodic disturbances. Under the plan in this paper,
such non-periodic disturbance is compensated by the feedback
control based on ground reaction forces. Simultaneously, an
adequate motion pattern is learned into the motion pattern
generator to automatically cope with the periodic forces from
walking motions. As the first step toward this goal, we consider
here the static balance control and the motion pattern learning
with respect to periodic external forces.

In the human balance control, ankle strategy is typically
observed for small disturbance, in which balance is kept by ankle

joint operation without moving any other joints such as knee and
hip (Horak and Nashner, 1986). In the case illustrated in Fig. 1, the
tilting motion of the floor on a large boat is slow, i.e., small in
short time. Thus, it is reasonable to assume an ankle strategy to
consider a control and learning scheme in biped balance control.

As mentioned in Section 1, adaptability should enable the
adjustment of motion to environmental changes on different
timescales. In a balancing task, this is expressed as the response to
a temporary external force as a short-term fluctuation and to an
ongoing, here periodic, external force as a long-term transition.
These two kinds of external force cause a contradiction in motion
pattern generation: In the former case, the motion pattern should
be unchanged (i.e., stabilized), because the external force is
regarded as the disturbance. In the latter case, the motion
patterns should sometimes be changed, i.e., restructured or
switched, to be appropriate to the new environment.

To cope with this contradiction, the following two character-
istics are introduced to a control and learning scheme: feedback
information regarding the ground reaction force and a feedfor-
ward controller as the motion pattern generator. This scheme is
illustrated in Fig. 2. Here, the following scenario is postulated: The
ground reaction force is informative for balance. The center of
action of all the ground reaction forces is called the center of
pressure (CoP) and coincides with the ZMP (Goswami, 1999).
Thus, balance control against the temporary external force is
constructed based on the feedback information regarding ground
reaction force, as shown in Fig. 2(a). Now, assume that the
external force is exerted in a periodic manner, as in Fig. 1. Then
the action of the balancing motion also becomes periodic. Based
on this periodicity the motion pattern is being stored in memory
during the learning process. Here, the torque trajectories are
considered to be the learning factor as a motion pattern. A benefit
of learning is balance maintenance without information on the
ground reaction forces, which generally provide significant
feedback for balancing. This process is illustrated in Fig. 2(b).

2.2. Static balance model

To achieve the scenario in the above section, a simple link
model, as shown in Fig. 3(a) is considered. The ankle joint acts
mainly against the small disturbance, which is called ankle
strategy (Horak and Nashner, 1986). From this point of view, an
inverted pendulum with small foot support is introduced with the
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Fig. 3. Model and stationary posture of the control law (7). (a) Link model. (b)
Stationary state.

following assumptions: the motion is restricted within the
sagittal plane. The ankle joint can generate torque 7 and its
deviation 6 and velocity 0 is detectable. The foot contacts ground
only at two points, where the vertical component of the ground
reaction force, Fr and Fy, is detectable. The ankle joint is located at
the center of the foot and enough low position.

The dynamics of the inverted pendulum is given by

10 = MLgsin0 + FyLcos0—F,Lsin0 +t = FaLsin(0—0y) + 7, 1)

where M is its mass, I is its moment of inertia around the joint, L is
the distance from the joint to the center of mass (CoM), g is the
gravity acceleration, Fx and F, are unknown external forces. F4 and
0r are given as follows:

Fa=1/(Mg—F,)* +F2, 2)

Fx

tan0y = — Mg—F,

3)

The foot support, on the other hand, never move when
the balance is maintained, implying that the moment balance
equations are obtained instead of the motion equation. They are
given as

1 1 1
Fy= 57T 3mE+ jfy' 4)
1 1 1
FT=——2€r+§mg+§fy. (5)

Here, m is its mass, ¢ is the distance from the joint to the foot end,
fy is an interacting force from the inverted pendulum.

2.3. Methods

The scheme is realized using the concept of feedforward and
feedback control. Here, feedback means that the system uses the
signal from the ground reaction force, and feedforward means
that it does not contains its sensory feedback.

In the next section, the control law is first constructed for the
ankle joint torque, tg. For periodic external forces, tg also
becomes periodic. Based on this periodicity, the torque pattern is
learned; i.e., the trajectories of tp are memorized during its
repetitive generation. The motion pattern generator, acting as a
feedforward controller, stores this pattern. The output torque of
the feedforward controller is denoted by 7.

The total torque 7 is the sum of 75 and 7p,:

T="T+Tpp. (6)

Assume that 75 = 0 initially holds. Then t is composed entirely of
the 7 component. As 15 is being learned, tp is gradually
decreasing. Finally, 74 is copied to 7y, i.e., replaced by 74. In the
next section, this process is formulated using the static balance
model in Section 2.2.

3. Formulation
3.1. Adaptive balance maintenance

Not only to keep Fr and Fy positive but also to make them equal
is a reasonable description of the control purpose for balance
control, since the CoP or ZMP is regulated to the center of the foot.
Then, the stability margin (McGhee and Frank, 1968) is maximum,
implying that this posture is maintainable against any external
forces. To achieve such situation, the next control law is applied:

T = —Kg0—Kp0+Kp / (Fy—Fpydt. @)

Proposition. Define the control law as (7), ie., t=1p for the
dynamical system (1), (4) and (5). At the stationary state, 0 = 0y as
well as Fr=Fy hold for constants Fx and F,.

Proof. At first, a new variable ; is defined as

T = /(FH—FT) dt. (8)
Then, the control law (7) becomes

T = —K40—Kp0+K;1y. 9

In addition, differentiating (8) and then substituting (5) and (4),
the following equation is obtained:

‘z':f=%‘c. (10)

Now, 6, § and 7y are regarded as a state variable. An equilibrium

point (?,5,@) of the dynamics (1) and (10) with control law (9) is
obtained by setting the differential term zero. It is given as

o K
0,0,75) = (@,0,%(@-0@). (11)

At this state, T =0 holds according to (9) and (11), indicating that
Fy=Fr. The local stability of this equilibrium point is ensured from
the controllability of the linearized dynamics around this point
(Ito and Kawasaki, 2005). O

The posture at the stationary state is depicted in Fig. 3(b). At this
posture, the moment of the external force and gravity is balanced.
Namely, no torque is required at the ankle joint and thus the
effective posture maintenance is achieved. Furthermore,
the dependence of the stationary state 0; on Fx and F, indicates
that the posture adaptively change with the external forces. The
local stability is the same as the actual human motion: humans
certainly tumble if they are pushed by a large force.

3.2. Learning of periodic pattern

This section treats the learning of periodic motion pattern as
torque trajectory, when the periodic external force is exerted.
Here, the period of the external force T, is assumed to be known.
The case in which its period is unknown will be discussed in the
next section.

In the static balance model with ankle strategy, the ankle joint
is the sole actuator. Thus, the ankle joint torque is stored to the
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motion pattern generator followed by the method in Section 2.3.
Namely, a control and learning law is defined as follows:

e The control law t is defined as the summation of the
feedforward torque 75 and feedback torque 7g:

T="Tf+Tp. 12)
e 75 is calculated by the next equation:

5 =Y, (13)

Here,

Y, =[0+.5,50C,CoC,S0S,CoS, - - . ,SnC,CnC,5nS,CaS], (14)

where 0, is calculated from the derivative of , defined as

0r=— % (15)

and S, =sinkw,.t, Cy=coskwet, w.=2n/T,, C=cosf and
S=sinf. Note that the definition of 6, is not required in this
control and learning method. ¢ is, on the other hand, an
estimate of the unknown parameter vector ¢ defined as

¢ =Ko, (16)
where
Kyt
"7 Kal—Kl a7
and

o =[I,—-MgL,—La?,—LpY Lad LAY, ..., —Lal®,—LBY Lo LAV
(18)

¢ is updated in the next learning rule.
e The learning of the feedforward torque 7y is described by the
update of ¢ as

¢ =—TIY/s. (19)

Here, I' is a positive diagonal matrix.
e For the feedback torque 15, the definition (7) is utilized:

T = —Ka0—K,0+ K / (Fy—Fr)ydt = —Ks, 20)

s:(?—@)r—ﬁ/(FH—FT)dt. 1)
Ky

Proposition. Assume that the period of the external force T, is
known. If a control and learning law is given as (12) and (19), ty is
constructed, in other words, ¢ is learned, so that tp, goes to zero.

Proof. Because of the periodicity, the external forces F, and F, are
expanded to the Fourier series as follows:

Fo= i{a?)sk+ﬂ§f>ck}, (22)
k
n
F = zk:{akw’s,<+ BYCi). (23)
Substituting them into (1), the next equation is obtained:
10—MLgS— zn:{a;XJskJrﬁ;j‘)ck}LCJr zn:{oc;{)sk +BYCILS =1. (24)
k k
Using the definition of Y, i.e., (14)

. n n
10, —MLgS—> ('S + B CILC+ > {o'Se+ B CILS = Yro (25)
k k

is obtained. Subtract (25) from (24), we obtain

10-0,) =1—Y,0. (26)
Furthermore, from (10), we also get

% T = % T. 27
Subtract (27) from (26),

1<é—ér—%ff> = (1—%)1—}@0 (28)
ie,

IKi$ =1—Yr g (29)
is satisfied. Now, consider the following positive definite function:
V=lKiIs?+¢ T '), 30
where

b=d—. 31

Note that 5 =<;5 since ¢ is constant. Then,
. - T —
V=Kiss+¢ I'''$p

1T _ N _
=Y, p)s+¢ I =(rd—Kss—Y;p)s+(~T'Y[s)' T
=Ky +Yrps—sTY,p = —Kys*> <0 32)

and
V = —2K; ss. (33)

V>0and V <0 in (5,¢) # (0,0) ensure the boundedness of V, i.e.,
the boundedness of the s and ¢. Next, the boundedness of s
implies the boundedness of 6 and @, while the boundedness of ¢
does the boundedness of ¢> Thus, Y, becomes bounded. Finally, s
is bounded since the left-hand side of (29) is bounded. Accord-
ingly, V is bounded because of the boundedness of s and $ in (33).

The boundedness of V ensures that V —0 when t— oo based on
the Lyapunov-like lemma (Slotine et al., 1991). This implies s— 0.
Accordingly, the update of d) leads tp, to zero. O

3.3. Period estimation of external force

The formulation of the previous section requires that the period
of the external force is known. However, the period is generally
unknown beforehand or varies with the situation. Thus, its
estimation is discussed in this section. This estimation is based on
the observation of the ankle joint motion: the ankle joint moves
with the same period as that of the periodic external force if the
balance is maintained. Because the period is uniquely determined
from the angular frequency, w, is estimated instead of the period Te.

For this estimation, the effect of low pass filter was utilized in
our previous paper (Ito et al, 2005). However, the generated
sinusoidal function was somewhat deformed, which does not
always lead to the good learning result. This is why the other
method based on the local autocorrelation is introduced.

The angular frequency is estimated by the following steps.

1. The trajectory of the ankle joint angle is stored back in time
during the interval Ts from to. This trajectory is put to 0s(t,to):
0s(t,t0) = O(to+1t) (=Ts <t <0). (34)

2. Using this 6(t,tp), the local autocorrelation r(t) is calculated by

< Bs(t,to)ﬂ(t) > Ts

r(t) = 0),0()> T, < Qs(t,to),es(tvt0)>Tg ’

(35
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Here,

0
Ca(tybit)y, = / a4 D) b+ D (36)

3. This r(t) should be nearly equal to 1 with every interval T
because of its periodicity. Thus, the time t;.(k) which gives
the local maximal value beyond a threshold ry(<1) is
memorized. Here, k is an integer denoting the order of the
maximal value.

4. T, is calculated by averaging some tmgx(k)—tmax(k—1) with
every time interval T,. Then, the estimated value of the angular
frequency @, is obtained by the following equation:

e =27/Te. (37)

5. The basic angular frequency in Fourier expansion o is adjusted

as the dynamics with the first order lag
@ = —ko(0—e) (38)

to avoid the discontinuous changes of the angular frequency.

S. Ito et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1093-1104

When the basic angular frequency is estimated, its higher
harmonics are obtained by the following recurrence equation:

(39)

|: cosnawt :|

coswt
sinnwt

—sinwt ] | cos(n—1)wt
sinwt } '

coswt | | sin(n—1)wt

Here, let us reconsider the construction of Y, in (14). S, and C;
are directly related to the periodic external force: the basis
functions of the expansion of the periodic external force. Y, also
contains such variables as 0, 0 that are not directly related.
However, 6 and 0 result in periodic if the balance is maintained
under the periodic external force. This fact allows the left-hand
side of (24) to be wholly expressed as the Fourier series with the
basic angular frequency w.. Namely, Y, is reconstructed as

Y, = [sinwt,coswt, . ..,sinnwt,cosnwt] (40)

and the left-hand side of (13) is expressed using (40) as well as qb
that consists of the Fourier coefficients. These definitions are
adopted in the following simulations and experiments.

2
L R
% :{% | ' T ' Mv ﬂ
g g

Fig. 6. Controller with period estimation using local autocorrelation. (a-c) Torque in cases and (d) estimated angular frequency in case (c).
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4. Simulation
4.1. Period estimation and torque pattern learning

4.1.1. Purpose

The first simulation investigates the efficiency of the period
estimation method based on the local autocorrelation, and
examine whether the torque trajectory is certainly stored to the
feedforward controller as the motion pattern generator.

4.1.2. Conditions

The adaptive posture change as well as the torque pattern
learning was simulated for the static balance model that is
mentioned in Section 2.2. The link parameters are M=0.50 kg,
L=0.2m, £=0.05m, I=0.025kgm?. Three controllers are com-
pared. They are applied to the same control law (12) and learning
law (19), but differ in the period estimation algorithm, i.e.,
controller with

(i) no period estimation. w is fixed to 1Hz;

(ii) period estimation based on the low-pass filter (proposed in
our previous paper, Ito et al., 2005). The 3-order Butterworth
filter is used for the ankle joint velocity;

(iii) period estimation using local autocorrelation (proposed in
this paper). The parameters are set as Ty=1s, T,=10s,
r0=0.99 and k, =1.5.

In each controller, the same values are set to the following
parameters: K;=20, K,=70, K;=3, I = diag[25, ...,25] and n=20.
Learning starts at 5s. The external force is imposed by the

a
0.18 . T

1099
following equation:
Fy = Mgsino, 41
Fy = Mg(1—cos), (42)

which is equivalent to the force that exerted on the slope with the
gradient o. « is set in the following three manners:

(a) a=Asin2znf, A=5° f=0.5Hz.
(b) oo =Asin2nf, A=5° f=1Hz.
(c) o =A;sin2mf, +Aysin2mfy, A;=A,=3°, f;=0.5Hz, f,=0.75Hz.

The 4th-order Runge Kutta method is used with the step size 1 ms.

4.1.3. Results

The torque trajectory t with its feedforward and feedback
components 7y and tb are depicted in Figs. 4, 5 and 6,
respectively, for the controllers (i), (ii) and (iii). The graph is
obtained for the external force in the cases (a), (b) and (c) from the
top. For the controller (iii), the estimated angular frequency is
shown in the bottom.

The controller (i) without the period estimation can learn the
torque trajectories only if the external force has the same period
as the preset value 1 Hz, as shown in Fig. 4(a). In other case, these
trajectories cannot be copied to the feedforward controller
completely, as shown in Fig. 4(b) and (c).

The controller (ii) can learn simple periodic trajectories with
various period, as shown in Fig. 5(a) and (b). However, complex
periodic trajectory that contains multiple frequency components
cannot learn completely, as shown in Fig. 5(c).
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Fig. 7. Result from a PD controller. (a) Ankle joint angle. (b) Ground reaction force. (c) Torque with feedforward and feedback component.
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On the contrary, the controller (iii) that is proposed in
this paper can learn even complex periodic trajectories, as shown
in Fig. 6(a)-(c). Fig. 6(d) demonstrates that this learning acquires
the correct estimated value, i.e., about 0.25Hz (n/2rad/s), the
greatest common divisor of fi=0.5Hz and f,=0.75 Hz.

4.2. Feedback effect of ground reaction force

4.2.1. Purpose

A remarkable feature of our control and learning method is to
make an effective use of the ground reaction force feedback,
though many conventional methods, typically a well-known PD
control, usually contain only the feedback of the joint angle
deviations/velocities. Here, our method is compared to the PD
control by setting zero or non-zero value to the parameter Ky, and
an advantage of our method is demonstrated.

4.2.2. Conditions

A case where our method shows a noticeable advantage is that
the periodic external force contains the bias component. Thus, the
external force is given as (41) and (42) where the slope angle « is
set as

o = Asin(27nft)—Apiass, A=0.11ad, f =1Hz, Apiis=0.15rad. (43)

The controller (iii) using the local autocorrelation to the period
estimation is used with two Ky values: K=0 as the PD control and
Kr=0.3 as our proposed feedback controller. The upright posture
(0=0, § =0) is selected as the desired posture of the PD control.
Any other parameters are the same as the previous section.

S. Ito et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1093-1104

4.2.3. Results

The PD control is designed to keep the ankle joint angle
constant, i.e., perpendicular to the foot part, which corresponds to
0 =0 in our simulation. This goal is achieved as shown in Fig. 7(a).
And, the ankle joint torque is certainly learned: Feedback torque
becomes zero, while the total torque is wholly composed of the
feedforward component, as shown in Fig. 7(c). However, the
ground reaction forces are not satisfying the unilateral condition:
they must be always positive, but FT sometimes takes negative
values in Fig. 7(b). It implies that the robot tumbles by the PD
control in the actual experiment.

The controller containing the ground reaction force feedback,
on the other hand, drives the ankle joint periodically around
forward slanted position. This motion is confirmed as a sinusoi-
dal-like trajectory around 0.15 in Fig. 8(a). Note that this offset
bias is equal to Ap;es. Thanks to this adaptive motion, the ground
reaction force is always kept positive (Fig. 8(b)). Of course, the
torque learning is completed as shown in Fig. 8(c).

In conclusion, our control law brings the robustness to the
biped balance against the external forces. See also Ito and
Kawasaki (2005).

5. Experiments
5.1. Apparatus

A simple robot, as shown in Fig. 9(a), is used to confirm the
effect of the control and learning scheme proposed in this paper. It
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Fig. 9. Apparatus. (a) A simple robot. (b) Slope stand.

has only 1° of freedom of motion at the base joint. The length of
the upper link is 0.5m, the base link is 0.1 m. The weight is
0.52 kg. The base joint at the center of the base is 0.046 m height
from the ground. Four small loadcells (force sensors) are attached
at each corner of the foot link. Using these loadcells, the vertical
components of the ground reaction forces are measured. The
angle deviation of the base joint is detected by the rotary encoder
installed in the motor that drives base joint.

To impose the periodic disturbance, the slope stand as shown
in Fig. 9(b) is utilized. The robot is made to balance on this
periodically moving slope stand in the experiment.

The angle of the base joint as well as the slope stand is
detected by the signal from the rotary encoder of the motor. This
signal is input to the personal computer as the controller through
the pulse counters. Their angular velocities are obtained using the
digital differential filter with 0.01 rad/s cut-off frequency. Signals
from the loadcells are also input through the AD converters via
strain gage amplifier. And the motors are driven by the signal
from the DA converter through the motor driver. The control
signal is generated in every 2 ms.

5.2. Conditions

Three cases are examined. In the case (a), the period of the
external force is given correctly and thus its estimation is not
necessary. The external force is generated using slope stand. The
slope angle o controlled using PD controller whose reference is
given by the sinusoidal function

o = Asin27f, (44)

where A=0.12rad and f=0.1 Hz. The case (b) requires the period
estimation. The slope angle is changed followed by the reference
trajectory (44), where the same value 0.12rad is set to A while the
different value 0.15Hz is set to f. In the case (c), « is given by

adding up two sinusoidal waves:
o = A1Sin27f; +A,sin2nfy, (45)

where A;=0.072rad (=2.5°), A,=0.105rad (=6°), fi=0.1Hz,
f>=0.2 Hz. The gains of the PD controller are 6.6 for proportional
gain and 0.3 for the derivative gain.

The control law (12) and the learning law (19) are adopted to
the controller with the following gain settings. K;=3.5, K,=12.4,
K=0.1, I = diag[0.2, ...,0.2], n=11. The parameters for the period
estimation are: Ty=2s, T,=30s, ro=0.99 and k, = 1.5. Note that
the period estimation is unnecessary for the case (a).

5.3. Results and discussions

The results of the above three conditions are shown in Fig. 10.
In the case (a), a learning process in which the feedforward torque
is gradually replacing the feedback torque is observed as
expected. However, the feedback torque does not completely
converge to zero, i.e., small vibrations remain. The main reason is
a mechanical problem: the robot as well as the slope stand has
small backlash in gears of motor. This backlash prevents the robot
from repeating exactly the same motion, although it can be easily
achieved in the simulations. The mechanical strain around the
base joint may be another problem.

In the cases (b) and (c), based on the period estimation of the
external force, the learning progresses so that the feedback
component decreases and is gradually being replaced by the
feedforward component. However, this also does not completely
converge to zero. The remaining vibrations are of the same
magnitude as the case (a), implying that results better than case
(a) are not expected in this robot system. Accordingly, we can
conclude that the torque is surely learned to the motion pattern
generator, and that torque pattern generation become less
dependent on the feedback signal of the ground reaction forces.

6. Discussion

This paper addresses adaptive aspects of animal motion from
the viewpoint of control and learning by taking static balance as
an example. The timescale in patterns of motion is focused on.
On a short timescale, the motion pattern should be robust, i.e., be
stabilized against sudden disturbances like environmental fluc-
tuations. On the other hand, the motion pattern should be
variable, i.e., be adjusted with respect to long-term variations
such as environmental transitions. In the case of a balancing task,
the former is expressed as a temporary external force, while the
latter occurs as a rather permanent environmental change, such
as a change of the ground slope with the standing position.

To cope with external forces with different timescales, a
control and learning method is proposed: a pattern, i.e., a posture,
is stabilized by the control scheme prepared for the temporary
external force, while a new pattern is stored to the motion
generator as a torque pattern by the learning scheme in response
to the periodic disturbance. Here, information on the ground
reaction force is regarded as crucial, since it is informative on the
balancing situation. This is why balance is maintained based on
feedback about the ground reaction forces in our control scheme.
However, in the stationary condition where a periodic distur-
bance is exerted, the torque trajectory is learned as a motion
pattern. After learning, the feedback information on the ground
reaction force is no longer required: The balance can be
maintained by the adaptively acquired torque trajectory in a
feedforward manner. This is equivalent to a sensorless control. To
achieve the sensorless control, the information on the controlled
object or environment should be acquired in the controller.
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Fig. 10. Controller with period estimation based on the low-pass filter. (a-c) Experimental results for cases.

This process will be a kind of intelligence of biological systems or
robots.

When non-periodic external force is exerted, the feedback
controller handles them. However, stationary balancing motion
never emerge from such non-periodic external force: a constant
motion pattern that achieves the balance maintenance is not able
to be acquired since such pattern cannot be embedded in advance
in the controller if the external force is not predictable. The
experimental result in Section 5 states it well: unpredictable
mechanical vibration and slippage due to static frictions and
backlash of gears at the joint of the robot and slope stand generate
disturbances with low repeatability. Although such non-periodic
component is compensated by the feedback controller, it cannot
be learned, which is shown as fine fluctuations of the feedback
component in Fig. 10. In summary, our control method is

constructed by combining the motion pattern generator coping
with periodic excitement with a feedback controller to handle
non-periodic disturbances. This dual control strategy allows us to
simultaneously processes the following two tasks; the balance
maintenance with respect to not only periodic but also non-
periodic disturbances, and the learning of the periodic component
of the control torque.

Extending a problem in our previous work (Ito et al., 2005),
this paper treats the uncertainty of the period of the external
force. As a solution, a period estimation based on the autocorrela-
tion is introduced. This method requires a high-performance
feedback controller that produces stable response to the periodic
external forces, because the period is estimated from the periodic
behavior of the ankle joint: If the ankle shows irregular behaviors,
the period estimate becomes unstable or fluctuated, which resets
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the learning of the motion pattern described as Fourier coeffi-
cients expanded by sinusoidal function with this estimated
period. In such a case, the learning does not converge for quite
a while. The high-performance feedback controller is also needed
to the learning of an adequate motion pattern, since the motion
pattern to be learned is a copy of the output of the feedback
controller. To enhance the performance of the feedback controller,
we introduced here the information of the ground reaction forces,
which provides the robustness to the biped balance as shown by
simulations in Section 4.2. In addition to the enhanced feedback
controller, our approach brings advantages compared to the sole
feedback controller in the point that the feedforward controller
automatically generates an adequate motion pattern, i.e., torque
trajectory independent of the sensory feedback. Furthermore,
such a motion pattern is adjusted on-line collaborated with the
feedback controller, although this process requires sensory
information.

Finally, the ankle strategy should be discussed. The ankle
strategy is well-described by an inverted pendulum model.
Because of its typicality and simplicity, many studies on the
human posture control adopt an inverted pendulum model from
various point of view: PID control (Peterka, 2000, joint stiffness;
Winter et al., 1998, intermittent control; Bottaro et al., 2008, and
so on, Gatev et al., 1999; Masani et al., 2006; Qu et al., 2007).
Focusing on the ground reaction forces, we also assume the ankle
strategy in this paper, because disturbances by external forces
are restricted only in the sagittal plane and their deviation is not
so rapid in a problem example shown in Fig. 1. Actually, the
frequency of the external force in experiments is not more
than 0.2Hz (Max. 8.5°). In a study of human motion measure-
ment, the disturbances applied to the human upright posture by
the moving platform is 0.5 Hz (Max. 15 cm) (Van Ooteghem et al.,
2008), where the strategy gradually shifted from the ankle
strategy to the multi-segment control. Thus, the ankle strategy
is a valid assumption in the condition of this paper. However,
some kinds of the postural control strategies are observed, and the
transition among the strategy by learning is reported to actual
human static balance. To extend our study, the discussions on the
control and learning will be required beyond the framework of
the ankle strategy.

7. Conclusion

This paper treated a biped balance control and learning when
an unknown periodic external force is exerted. In this case, a
human learns a motion pattern by which the biped balance is
maintained with performing the stabilization task.

The above process is formulated with dynamical equations
using an inverted pendulum model based on the ankle strategy.
Thanks to the feedback controller based on the ground reaction
force, the stationary posture adaptively changes with the external
force. To store the feedback torque trajectory of this controller
when a periodic external force is imposed, the motion generator is
prepared in parallel. Then, the dynamics of the balancing motion
is expanded to a Fourier series. The local autocorrelation of the
base joint motion is efficiently used to estimate the basic angular
frequency of the Fourier expansion. Next, Fourier coefficients are
learned in the motion generator to replace the feedback torque
trajectory by the feedforward one. In this learning, the decrement
of the feedback component in the total torque output is ensured
based on a Lyapunov-like lemma.

In a computer simulation, the acquisition of the torque
trajectories is confirmed against unknown periodic external
forces with various periods. A similar tendency toward acquiring
the torque trajectories is also observed as an actual physical

phenomenon using a robot. However, the torque pattern is not
completely stored, i.e., the feedback torque is not forced to zero by
learning, due to some mechanical problems.

The periodicity assumption in the external forces is expected
to be extended to the control of locomotion. Because stationary
locomotion is regarded as periodic activity, forces disturbing the
balance, such as inertial forces, also become periodic. Application
to the motion planning or pattern generation of locomotion is
considered as our future works.
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