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Extraction of Moving Areas in Random-Dot Animation
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Satoshi Itoa, Keito Uchizonob, and Ryosuke Moritaa

aFaculty of Engineering, Gifu University, Gifu, Japan; bGraduate School of Natural Science and
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ABSTRACT
The observation of random-dot animations requires the motion
detection techniques of moving objects from the background,
allowing the boundary of the moving areas to be perceived des-
pite that each frame consists of random-dot patterns with no
boundaries. The present study aims to extract the moving parts
as well as its moving direction on the random-dot animations
based on the local parallel computation of the pixel level.
Assumingmotion is captured in high frame rate, the variable range
of an optical flow is restricted within a finite discretized area of pix-
els. Then, the system is constructed to select the suitable optical
flow among the finite possibilities according to the reaction-diffu-
sion equation dynamics, computed in a distributed manner. This
process is one of the regularization methods and is described as
the minimization process of the potential functional. Using the
computation result of the previous frames, we attempted to reduce
the computational iterations and to detect the plural objects mov-
ing at different speeds. These effects are demonstrated by com-
puter simulations using actual random-dot animations.

KEYWORDS
Moving area extraction;
optical flow; parallel
processing; potential
functional; random-dot
animation; word

1. Introduction

Movies or animations consist of many frames displayed at several tens per
second. Slight differences of the images between consecutive frames lead to
the perception of the moving subjects depicted in the frames. Namely, per-
sons, objects, or background can be discriminated within a single frame,
which helps in connecting the spatial relationship between consecutive
frames and in perceiving the motion.
In the animation from random-dot frames, however, any subjects cannot

be extracted within the single frame because the frame is a random-dot
image that consists of the salt-and-pepper pattern without any boundaries
discriminating each subject from the background or the other objects.
Nonetheless, we can perceive the motion of the random-dot figures in

CONTACT Satoshi Ito satoshi@gifu-u.ac.jp Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu
501-1193 Japan.

Supplemental data for this article can be accessed https://doi.org/10.1080/01969722.2020.1721728.

� 2020 Taylor & Francis Group, LLC

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL
https://doi.org/10.1080/01969722.2020.1721728

http://crossmark.crossref.org/dialog/?doi=10.1080/01969722.2020.1721728&domain=pdf&date_stamp=2020-02-12
https://doi.org/10.1080/01969722.2020.1721728
https://doi.org/10.1080/01969722.2020.1721728
http://www.tandfonline.com


random-dot animations, which implies that the boundaries within each sin-
gle frame are not necessary for the visual perception of the motion.
Recent image processing technologies realized by deep learnings achieved

the real-time detection of objects by the segmentation (Chen et al. 2018) or
the bounding box (Russakovsky et al. 2015). Such processes are executed in
the single image first, and then the motions are detected by relating the
same object between sequential frames. Accordingly, the random-dot ani-
mation where the subject extraction is not feasible requires a different
approach from these technologies.
The random-dot image also utilized a random-dot stereogram

(Thimbleby, Inglis, and Witten 1994) or a random-dot kinematogram to
elucidate the neuronal or psychological mechanism of human perception
(M€uller, Trautmann, and Keitel 2016). Particularly, the random-dot stereo-
gram was also investigated to model the stereoscopic computation in
human vision (Marr and Poggio 1976; Kumar and Desai 1994). This paper
takes the latter computational approach for motion detection.
Some computational models of the vision adopt a standard regularization

(Engl, Hanke, and Neubauer 1996) that changes an ill-posed problem to a
well-posed problem by defining appropriate penalty function. Among the
visual process, Poggio, Torre, and Koch (1985) described an early vision
process such as edge detection, optical flow, surface recognition, shape
from shading and so on by the minimization of a cost function using the
standard regularization. Recently, this approach was applied to the image
mismatch removal between two images (Zhang et al. 2018), the elimination
of noise and artifacts in the synthetic aperture radar image (Ley, D’Hondt,
and Hellwich 2018), a new texture generation (Li et al. 2018), multi-frame
image super-resolution (Laghrib, Hadri, and Hakim 2019) and visual track-
ing problem (Zhou et al. 2018). In summary, the standard regularization is
utilized not only to understand the meaning of the visual process but also
to improve the results of the image processing.
The regularization was introduced also to detect the moving area so far.

ElTantawy and Shehata (2018) utilized the regularization for detecting the
moving object in the movie. The large difference in this paper is found in
that the computation is defined in each interval of the random-dot frames
whereas the paper, ElTantawy and Shehata (2018) try to find it from the
data combined the images from several frames together. Because the calcu-
lation restarts every frame in this paper, we will attempt to utilize the result
of the former frame to detect the moving area. Furthermore, Chen et al.
(2016) proposed the fast algorithm to compute the optical flow applying
Split Bregman regularization. However, this does not appear effective for
the random-dot animation because the gradient of the images is utilized
for calculation.
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The technique to separate the moving figures from the background ran-
dom-dot animations was investigated using a dynamical process. Ueyama
et al. (1996) introduced the Ginzburg–Landau equation, a reaction-diffusion
equation whose reaction term was described as a bi-stable potential functional.
This bi-stability was used to separate the figure and background. Okura,
Yuasa, and Arai (2001) extended this method to detect the motion of a 3D
object. Although this dynamical process can be computed in a parallel man-
ner, the initialization of this dynamical process requires the global distribution
of optical flows, which makes local computation not feasible.
To improve this defect, we report a dynamical computation model for ran-

dom-dot animations, which can be computed in a parallel manner that
includes the initialization process (Ito and Sasaki 2007). This paper summa-
rizes this algorithm as a standard regularization and describes it as an opti-
mization of a potential functional. In addition, the study not only improves the
computation speed by reducing the repetition but also extends the recognition
of random-dot moving objects to be applicable to different speeds, by modify-
ing the parallel initialization process so as to utilize the result at the previous
frame. The rest of this paper is structured as follows: the problem formulation
is discussed in Section 2. Section 3 presents the former mathematical concepts
from the distributed computation viewpoint. Section 4 explains the computa-
tion improvements. In Section 5, the simulations demonstrate the performance
of our algorithm using the case studies. Section 6 provides conclusions.

2. Assumptions and Problem Description

The semiconductor technology assists in improving the graphics-processing
unit computational speed, allowing in achieving the high-speed image proc-
essing in the future. Under a tremendously high processing rate, the images
between two consecutive movie frames do not change significantly; if the
changes occur owing to the motion, its moving distance will be suppressed
at most in a few pixels. To anticipate such a high-speed processing in the
future, we set the following assumptions for the random-dot animations:

� A1. All areas either stay still or move constantly by one pixel between the
consecutive frames.

� A2. The direction of each moving object is limited to only four directions:
left, right, upward or downward.

� A3. There are no rotations or scale-changes across all objects in
the images.

� A4. All frames are free from noises.

The first assumption A1 will be removed in Section 4. Then, the problem
is defined as follows:
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� Separate the moving areas from the background and detect their moving
direction in the random-dot animations.

3. Method

3.1. Concept and System Structure

We aim to achieve a distributed processing executable in a local and paral-
lel manner between the frames. The distributed processing unit described
in this paper is called an element: that is supposed to be assigned to each
pixel of the animation frame. Computation is required at the processing
element and is executable between the frames.
The element possesses five states, which are called flags in this study.

Each flag denotes the direction to which a pixel is moving or staying still,
such as left flag, right flag, up flag, down flag, and still flag. Then, we con-
struct the five fictive planes, left plane, right plane, up plane, down plane,
and still plane, by aligning each flag while keeping the topological relation
of the original elements or pixels.
The moving areas and their directions are discriminated using the flags

as explained in Figure 1. In the moving left area, which is the pixels of the
airplane, all flags position are selected on the left plane. Given that the
background moves downward, all flags on the down plane are selected
except the moving object (the airplane).
This flag selection is equivalent to the optical flow calculation based on a

way where we restrict it to five possibilities and decide the adequate one of
five considering the spatial movement between frames and the local infor-
mation at the neighboring pixels.

Figure 1. Concept.
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Next, we attempt to define the processing dynamics to achieve the final
state as shown in Figure 1.

3.2. Dynamics

The flags take a continuous value between 0 and 1, though it should be ori-
ginally a discrete value indicating yes or no for the question: whether the
pixel the flag belonging to is moving to the direction assigned to the flag.
Let us denote the flag state as fk ¼ fk (x, y, t) 2 [0, 1], where (x, y) is the
position in the image, t is the calculation time, and k¼ 1, … , m discrimi-
nates the fictive plane. m indicates the number of flags in the processing
elements, and m¼ 5 according to the second assumption A2.
We define the flag dynamics considering the following properties.

� P1. For every five flags in each element, one flag takes the value of one,
whereas all others take the value of zero.

� P2. Almost all flags take the same value as their neighbors in each
flag plane.

Property P1 is obvious given that the moving direction of the pixel is
unique. Contrarily, property P2 implies that the flags are different from
their neighbors only in the boundary of the moving objects. To develop
both the P1 and P2 properties, two kinds of interactions are introduced as
shown in Figure 2.
For the first property, the following competitive dynamics is defined:

s1
dfk
dt

¼ � @V1

@fk
(1)

Figure 2. Two kinds of interactions among or within the fictive flag planes.
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V1 ¼
ð ð

X
� 1
2

Xm
‘¼1

f 2‘ þ 1
4

Xm
‘¼1

Xm
‘0 6¼‘

f 2‘ f
2
‘0 þ

1
4

Xm
‘¼1

f 2‘

 !2
2
4

3
5dxdy (2)

Here, s1 controls the speed of the dynamics, and X denotes the whole
frame area. These dynamics work within each processing elements, i.e., all
flags located in the same position in each flag plane where a winner-take-
all property results in all zero states except the sole flag that takes the value
of one (Fuchs and Haken 1988).
In the second property, the averaging or smoothing dynamics are intro-

duced within the respective flag plane:

s2
dfk
dt

¼ � @V2

@fk
(3)

V2 ¼ 1
2

Xn
k¼1

ð ð
X
rfkð Þ2dxdy (4)

where s2 controls the speed of the dynamics and r ¼ @
@x ,

@
@y

� �
:

Finally, the entire dynamics are written as an optimization process by
connecting these interactions, which minimizes the potential functional
V¼V1 þ KDV2:

s
dfk
dt

¼ � @V
@fk

¼ fk �
Xm
‘ 6¼k

f 2‘ fk �
Xm
‘¼1

f 2‘ fk þ KD rfkð Þ (5)

Here, s¼ s1, and KD ¼ s1/s2 that adjusts the time scale of the above
two dynamics.
The image data are digitalized in the computation: (x, y) is replaced with

(i, j) where i and j are integers. Then, the dynamics from V2 can be
replaced as the digital Laplacian filter.

3.3. Initialization

The initialization of each flag is based on the correlation of the local area
between consecutive frames. Let pðnÞi, j denotes the pixel value at the position
(i, j) in the n-th frame. Then, the image piece vector vðnÞi, j consisting of the
pixel values around the position (i, j) is defined in the n-th frame:

v nð Þ
i, j ¼ pðnÞi�1, j�1 pðnÞi, j�1 pðnÞiþ1, j�1 pðnÞi�1, j pðnÞi, j pðnÞiþ1, j pðnÞi�1, jþ1 pðnÞi, jþ1 pðnÞiþ1, jþ1

h i
(6)

The flags are initialized using the local correlation coefficient r nð Þ
k ði, jÞ as
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f nð Þ
k ði, j, 0Þ ¼ r nð Þ

k ði, jÞ (7)

Where

r nð Þ
k i, jð Þ ¼

v n�1ð Þ
i, j � z
v n�1ð Þ
i, j

��� ������ ��� zj jj j
(8)

z ¼

v nð Þ
i, j�1 k ¼ up

v nð Þ
i�1, j k ¼ left

v nð Þ
i, j k ¼ still

v nð Þ
iþ1, j k ¼ right

v nð Þ
i, jþ1 k ¼ down

8>>>>>>>>>><
>>>>>>>>>>:

(9)

Here, the operation “�” denotes the inner product, and jj � jj is the L2-
norm. The above operation allows us to detects one of the five movements
by finding the largest within each element, because (8) is a correlation coef-
ficient between the image piece at (i, j) and the 1-dot shifted point in the
next frame. The positiveness of all the elements of the image piece vector
denotes 0 � j fk (i, j, 0)j � 1.
The initialization (7) and the dynamics (5) are calculated locally since

the flag values other than those of the neighboring pixels are not required.
Dynamics (5) is a minimization process of the potential functional V for
the initial state given by (7).

3.4. An Example

A simple simulation was performed to demonstrate the result of the dynam-
ical process. This six-frame example comprises of a random-dot square with
40 by 40 pixels rightward moving one pixel per frame on the random-dot
background. The dynamics are computed using Euler’s method programmed
in Python 3.6 with Keras. The parameters are set as KD ¼ 0.5 and s¼ 5. The
number of computational iterations between frames is set at 80.
The simulation results are shown in Figure 3. The top row shows a series

of 6 frames, and the final state of each plane after 80 iterations are depicted in
the following order: up plane, left plane, still plane, right plane, and down
plane. The white color represents the flag state 1, whereas the black color rep-
resents the flag state 0. The right plane displays the square moving to the
right. The background is detected as the white-tone area in the still plane.
The time course of each plane between the 3rd and 4th frames is

depicted in Figure 4. The diffusion process averages each flag plane to
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remove the noises so as to satisfy P1, and reaction term works to discrim-
inate the motion direction solely at each pixel to satisfy P2.

4. Improvements

4.1. Problems to Be Solved

The separation of moving parts from the background is achieved in form
of flag selection process on each fictive flag plane, as shown in the previous
section. However, this separation requires some computations, such as 80
iterations in the above example, between the consecutive frames. The com-
putations must be completed in a short time between the frames.
Therefore, a reduction of the computational time (iterations) is a cru-
cial issue.
In the previous section, in addition to the computational time, the move-

ment speed is limited to only 1-pixel per frame under the assumption A1.

Figure 3. Final states of each fictive plane for the first 5 frames. Black denotes 0, and white
denotes 1.
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The animation normally contains several objects moving at different
speeds. The mechanism for coping with various speeds for multiple objects
is another important problem.

4.2. Solutions

4.2.1. Assumption and Idea
To solve the speed of the moving object, we loosen the assumption A1
as follows:

� A1’. All areas are either staying still or moving constantly. The constant
speed is one pixel in several frames.

This assumption implies that the objects do not move more than two
pixels in one frame.
The process of the flag selection, proposed in the previous section, is

equivalent to the calculation of the optical flow. If the motion direction is
constant, the optical flows are the same in almost all images except the
boundaries of the moving objects. Suppose a square area is moving to the
right and the background is moving upward, as illustrated in Figure 5(a);
then, the optical flow on the background faces upward as denoted by the
dark area in Figure 5(b), whereas those of the square area face rightward as
denoted by the white area. However, the position of the white area shifts to
the right in the next frame given that the square area has moved to the
right. By comparing the optical flows in two consecutive frames, it is
revealed that most of the optical flows do not change. Only the boundary
area, as shown in Figure 5(c), has different optical flow by the influence of
the movement of the square area.

Figure 4. Time evaluations of each plane between the 3rd and 4th frame.
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This finding implies the possibility of reducing the computations by sus-
taining the calculation of the optical flow, i.e., the flag selection, through
the several frames as illustrated in Figure 6. Suppose a flag value converges
to 0 after a long iteration, as shown in Figure 6(a); if the iterations of the
calculations are reduced, the result obtained will be a value in the transient
state due to the short of the iterations. In addition, this flag value is initialized
when the next frame starts, as depicted in Figure 6(b). Not so, we should con-
tinue the flag calculation without initialization almost at all areas, because the
optical flow does not change as seen in Figure 5(c). As a result of this, not
the transient but the stationary value can be obtained in the small iterations
as shown in Figure 6(c), although it takes several frames.

4.3. Formulation

4.3.1. Reduction of Computation
Based on our discussion in the previous section, we initialize the flag
according to the local correlation only if it belongs to the boundary of the
moving parts; otherwise, continue the calculation without initialization.
The boundary pixels are discriminated by comparing the local correlation

coefficient r nð Þ
k ði0, j0Þ with those of the previous frame r n�1ð Þ

k ði0, j0Þ:
Actually, two correlation coefficients became the same besides the bound-
ary if the speed is constant. Based on this discrimination rule, we redefine
the initialization as follows:

f nð Þ
k ði, j, 0Þ ¼ r nð Þ

k ði, jÞ r nð Þ
k i, jð Þ 6¼ r n�1ð Þ

k ði0, j0Þ
f n�1ð Þ
k ði, j, tendÞ otherwise

(
(10)

where tend denotes the end time of the computation of dynamics (5). (i’, j’)
should be selected depending on the maximal flag after the computation
result of the previous frame: If the still flag has the maximum value among
five within the element, this pixel can be regarded to stay still and thus the
correlation coefficient should refer to the same position, (i0, j0) ¼ (i, j). If,
for example, the up flag has the maximum value, this pixel can be regarded
to come from the downward direction and thus the correlation coefficient

Figure 5. Optical flow differences between two consecutive frames.
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should refer to one-pixel below, (i0, j0) ¼ (i, jþ 1). In the same way, the
maximal value is taken at the left, right, and down flag, (i0, j0) is defined as
(iþ 1, j), (i� 1, j) and (i, j� 1), respectively.

4.3.2. Moving Objects at Different Speeds
Next, let us consider a case where the objects are moving at different
speeds. The assumption A1’ means that these objects move one pixel in a
few frames, in other words, at most one pixel per frame. In such moving
objects, the flag corresponding to its direction should keep 1. However, the
objects only move every few frames, e.g., move, stop, stop, move, stop,
stop,… and thus r nð Þ

k ði, jÞ becomes different from r n�1ð Þ
k ði, jÞ : (10) will

reset the flags in waiting for the next motion
In fact, there are two cases where r nð Þ

k i, jð Þ ¼ r n�1ð Þ
k ði, jÞ does not hold.

The first case corresponds to the shaded area in Figure 5(c), as mentioned in
the above section. However, when the slowly moving objects stop their
motion until the next motions, the white areas in Figure 5(c) do not satisfy
r nð Þ
k i, jð Þ ¼ r n�1ð Þ

k ði, jÞ: These two cases can be discriminable, because the lat-
ter is limited to only the case where the object ceases the motion just at this
frame, implying that, in the previous frames, the flag other than the still flag
should have taken maximum, i.e., r nð Þ

still ¼ 1 and argmax f n�1ð Þ
k tendð Þ 6¼ still:

Therefore, to utilize this historical information, i.e., the result of the pre-
vious frame, we redefine the initialization using the following weighted
summation:

f nð Þ
k i, j, 0ð Þ ¼

if r nð Þ
k i, jð Þ 6¼ r n�1ð Þ

k i0, j0
� �

:

r nð Þ
k i, jð Þ
otherwise:

if r nð Þ
still i, j, tendð Þ ¼ 1 and argmaxk f n�1ð Þ

k tendð Þ 6¼ still:

af n�1ð Þ
k i, j, 0ð Þ þ ð1�aÞr nð Þ

k i, jð Þ
otherwise:

f n�1ð Þ
k i, j, tendð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(11)

Figure 6. The flag value evolution with the iteration times and initialization.
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where a is a parameter that controls its weight at the initialization. When a
is set to 0, a completely new initial value is set based on the correlation
coefficient as is the same as the case r nð Þ

k i, jð Þ 6¼ r n�1ð Þ
k ði0, j0Þ: When a is set

to 1, the flag is set the initial value in the previous frame again assuming
that the motion certainly occurred at the previous frame; This definition
continues to set this initial value recursively even if the objects stay during
the several frames.

4.3.3. Initial Value Mapping
Another improvement we can do to shorten the computation time is to
manipulate the flag initial values defined as the correlation coefficient (8).
The reaction terms make only the largest flag to 1 as well as all the other
small ones to 0 in each element. This implies that, if we want to fasten the
convergence, we should set the larger initial value if the correlation is high
and the smaller initial value if the correlation is low.
The correlation is important information for estimating the motion

and therefore its largeness relationship should be maintained. Thus, we
map it with the monotonically increasing function g(x) (x 2 [0, 1])
with g(0) ¼ 0 and g(1) ¼ 1 as follows:

r nð Þ
k i, jð Þ ¼ g

v n�1ð Þ
i, j � z
v n�1ð Þ
i, j

��� ������ ��� zj jj j

0
B@

1
CA (12)

For example, the sigmoid function with high slope will enable us to
set 0 or 1 if the appropriate threshold is selected: Such initial values
make the winner-take-all dynamics converge rapidly. The original defin-
ition (8) corresponds to the case where the identity function is selected,
i.e., g(x) ¼ x.

5. Simulations

5.1. Purposes and Conditions

Incorporating the improvements, simulations were conducted to con-
firm whether:

� The reduced iteration of the computation can produce proper results,
� The change of moving direction can be detected rapidly even on the mov-

ing background, and
� The two moving parts with different speeds can be detected correctly.
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As in Section 3.4, the dynamics are computed using Euler’s method pro-
grammed in Python 3.6 with Keras, and the parameters are also set as KD

¼ 0.5, s¼ 5 and a¼ 0.75. g(x) ¼ x2 is adopted to all the simulations in this
section. The number of computational iterations between frames is reduced
to 10 times.

5.2. Results

5.2.1. Reduction of Iterative Computation
The first example adopts exactly the same random-dot animation presented
in Section 3.4. However, the iteration of the computation was set to 10, 1/8
of Section 3.4.
The calculation results between each frame are shown in Figure 7.

Although the flags had not converged to 0 or 1 in the 1st frame owing to
the short iteration, they converged over the 8th frame without initialization
and the final values are similar to those in Figure 3. Figure 8 shows the
time course of the flag plane covering 8 frames. As the flag initialization
has been restricted at the boundary of the moving part, almost all flags are

Figure 7. Final states of each fictive plane for the first 8 frames obtained by the
improved algorithm.
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changing continuously and converging to 0 or 1 in the whole number of
iterations calculated in the 8th frames.

5.2.2. Detection of the Moving Direction Change
To reduce the iteration between frames, our improved method selects
whether the flag is initialized or not at the start of each frame. Then,
inappropriate skips of the initializations may not immediately detect change
of the moving direction if the initialization should be done there. Actually,
in such cases, the skip of initialization requires more computation time to
detect the correct moving direction. Thus, the next simulation examines
how quickly the change of the moving direction can be detected, using the
following random-dot animation: the square stays on the background mov-
ing downward until the 20th frames. From the 21st frame, the background
changes the motion to the left while the square start moving upward
simultaneously.
The result of the flag planes from 20th to 24th frame is shown in

Figure 9. The background that moves downward is detected in the down
plane, and the white square can be seen in the still plane as we expected at
the 20th frame result. Consuming only a couple of frames, the motion
change of both square and background are almost detected, although the
complete detection seems to need some more frames.

5.2.3. Detection of Two Areas Moving at Different Speeds
Our improvement enables the system to detect the slower speed motion
than 1-pixel per frame. Finally, we tested an animation where two squares

Figure 8. Time evaluations of each plane between the 1st and 8th frame obtained by the
improved algorithm.
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are moving at various speeds: the speed of the smaller square moving to
the right is 1-pixel per frame, while the speed of the larger part moving
upward is 1-pixel per three frames.
The result is shown in Figure 10. Although the slow larger part stops

every 2 frame, the upward motion is detected in the up flag planes success-
fully. There, white color is getting dark as the temporal stop continues.
This darkness will be available to know the speed of the slow mov-
ing objects.

6. Conclusion

In this study, we proposed an image processing system that can abstract
moving parts from random-dot animation developed from the concepts in
our previous study (Ito and Sasaki 2007). Restricting the movement of the
animation objects to the four directions, namely, up, down, left, and right,
the constant speed to 1 pixel per frame, the constructed system discrimi-
nated the moving parts to each direction from the background. Then, five

Figure 9. Final states of each fictive plane from the 20th to 24th frame.
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flags that discriminated the five possible movements, namely, up, down,
right, left, and still, were introduced for each pixel of the animation frame.
The flags are evolved between the frames according to the dynamics classi-
fied to the reaction-diffusion equations, which select only one of the five
flags from each pixel of the smoothed neighboring pixels. These dynamics
are expressed as the minimization process of a potential functional, and its
calculation is executed in the distributed and parallel manner. In other
words, among various methods for optical flow computation (Fortun,
Bouthemy, and Kervrann 2015), the feature of this system is found in the
computation based on the regularization process.
Next, based on the fact that the optical flows vary only at the boundary

of the objects, the number of the iterative computation between the frames
was reduced by skipping the flag initialization at the start of each frame.
This skip allowed us to continuously calculate the flag dynamics over the
several frames. This was the main reason for the reduction of the computa-
tional iterations, though some frames are required to obtain the final

Figure 10. Final states of each fictive plane for the first 5 frames.
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calculation result. Furthermore, utilizing the latest result of the flag calcula-
tion, this system was improved to detect slower movements other than 1
pixel per frame. The effects were confirmed by computer simulations using
suitable random-dot animations.
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