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Abstract. In this paper, we present a control method for
achieving biped static balance under unknown periodic
external forces whose periods are only known. In order to
maintain static balance adaptively in an uncertain envi-
ronment, it is essential to have information on the ground
reaction forces. However, when the biped is exposed to a
steady environment that provides an external force peri-
odically, uncertain factors on the regularity with respect to
a steady environment are gradually clarified using learn-
ing process, and finally a torque pattern for balancing
motion is acquired. Consequently, static balance is main-
tained without feedback from ground reaction forces and
achieved in a feedforward manner.

1 Introduction

1.1 Background

Static balance control is fundamental to biped motion.
Biped balance is strongly influenced by environmental
conditions, e.g., the gradient of the ground or the exertion
of external forces. In the static case, if all environmental
conditions are known, a posture that prevents tumbling
can be planned based on the relation between the ground
projection of CoG (center of gravity) and the support poly-
gon (Goswami 1999). That is, the position of CoG must be
in the area above the feet when the biped is standing on lev-
eled ground with no external forces. By selecting one such
posture as a reference, balance control is feasible merely
by applying position feedback control. However, when the
environment contains unknown or varying factors, such
postures cannot be planned in advance. Besides, the refer-
ence postures planned under nominal environmental con-
ditions are not always adequate in an actual environment.
For example, a desk light that is stably standing on a desk
will tumble when a slope is created by gradually tilting
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the desk. In the case of human beings, they can adaptively
adjust their CoG with respect to the slope angle, which
reduces the possibility of tumbling.

In the literature, two approaches have been taken to
examine how such an adaptive behavior is achieved. One
is based on the motion measurement of human beings.
This observational approach aims to clarify a human mo-
tor control strategy in an analytic manner by investigating
measured data, i.e., joint angles, ground reaction forces,
or EMG responding to either impulsive (Nashner 1981;
Hay and Redon 1999; Chow et al. 2002) or periodic exter-
nal forces (Ko et al. 2001). The other approach is based
on the realization of motor behavior by simulations or
robot experiments. This constitutive approach demon-
strates what kind of behavior emerges from a given control
law and attempts to understand the control mechanisms
by constructing a motor system. In this paper, we adopt
mainly the latter constitutive approach, and we discuss a
control method that produces the adaptive changes that
occur in a motion pattern in the presence of steady un-
known environmental conditions.

In the field of biped robots, a criterion based on the
concept of ZMP (zero moment point) (Vukobratovic et al.
1989) has been proposed to design walking patterns, and
lots of robots have achieved biped locomotion using this
concept (Takanishi et al. 1988; Nagasaka et al. 1999;
Kuroki et al. 2003). However, this method requires vari-
ous parameters in the environment or in the robot’s struc-
ture. Uncertainty in either type of parameters sometimes
prevents the position of ZMP from coming to the ref-
erence position or trajectories. Some studies modify the
desired positional trajectories based on the actual ZMP
position (Hirai et al. 1998; Haung et al. 2000; Park and
Cho 2000; Nishiwaki et al. 2002; Sugihara et al. 2003).
Although Napoleon et al. (2002) discussed the stability
of ZMP feedback from the viewpoint of avoiding the in-
verse response of ZMP in upright posture control, many
other works did not present enough analysis based on the
dynamic equation.

Generally speaking, when an environment contains
uncertain factors such as disturbances, feedforward con-
trol does not provide sufficient performance because of the
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error caused by the uncertainties. Hence, feedback infor-
mation becomes crucial. Of course, the influences from
the uncertainties must be reflected in the feedback infor-
mation. We select the ground reaction forces as such infor-
mation in balance control, because clinical medicine uses
the center of pressure (CoP) of ground reaction forces as
an index of human balance check, and deviations in CoP
are evaluated to understand a person’s balancing ability. In
addition, CoP is identical to ZMP (Goswami 1999). From
these points of view, we first consider a balance control that
is based on feedback on ground reaction forces and that
seeks to maintain static balance in environments where
unknown constant external forces are exerted. Second, we
discuss the learning of uncertain factors through motions
influenced by regular actions in a steady environment.
Such unknown factors regarding regularities in a steady
environment would be unknown before the motion begins,
but would become known through sustained motion in the
environment. For example, from our behavior on a slope,
we can learn the slope’s gradient; or, while we stays on
a ship on water that has constant rhythms, we obtain an
understanding of the periodical ship’s actions. If such reg-
ularities in a steady environment become known, the ac-
tion from the environment would be predictable and thus
the pattern generation for motor control becomes feasible.

Balance control in an uncertain environment has been
considered in studies of locomotion using the central pat-
tern generator (CPG) model (Taga 1995; Ogihara and
Yamazaki 2001; Lewis et al. 2003). In those studies, the
entrainment produced by the stable limit cycle in coupled
nonlinear dynamics of body motion and of neural oscil-
lators is essential for robustness against uncertain factors,
and thus there is no learning process during motion: other
than state variables, no parameters change inside the con-
troller. In contrast to these works, we here consider the
learning of a torque pattern that the controller provides as
a motor command to joint actuators. As an example of this
issue, we deal with static balance control, since dynamic
motion such as locomotion would needlessly complicate
the problem in the first step of this kind of study. More-
over, the steady environmental condition is restricted so
that it applies an unknown constant external force or un-
known periodic force with a known period. In such prob-
lem settings, we show that information about ground reac-
tion forces, which is indispensable to obtain balance un-
der uncertain environmental conditions, becomes unnec-
essary once the uncertain factors are learned. Then, we
use the mathematical framework of adaptive control. The
adaptive control aims mainly to manipulate unknown ob-
jects under uncertain parameters of manipulators (Slo-
tine 1991; Kawasaki et al. 2003), and thus its application
to locomotion control has not been reported much. Al-
though Chew and Pratt (2002) apply adaptive control to
locomotion, they do not treat dynamic situations in which
unknown periodic external forces are exerted.

1.2 Simple model of biped balance control

In Fig. 1, we illustrate a simple model for analysis. It con-
sists of an inverted pendulum representing the whole body

Fig. 1. Simple model of biped balance control consisting of support-
ing segment and upper segment including body and legs expressed
by inverted pendulum. Notations are: sway angle θ , ground reac-
tion force at two contact points FH and FH , joint torque τ , mass of
inverted pendulum M, external force components Fx and Fy , internal
force between two segments fx and fy , distance from ankle joint to
CoG of the inverted pendulum L and distance from ankle joint to
the tips of symmetrical supporting segment �. θf is an angle made by
the vectors of external force and gravitational force

except the foot and a supporting segment corresponding to
the foot, and its motion is restricted to the sagittal plane
on level ground. A body generally has a complex struc-
ture with many segments and joints. However, the ankle is
mainly the joint actuated against the forces of small per-
turbations (Ko et al. 2001); this is often called the ‘ankle
strategy’ (Horak and Nashner 1986). In order to make the
analysis simple, we consider only the ankle joint for bal-
ance control and regard the body as a single segment, i.e.,
an inverted pendulum by assuming that the deviations of
the other joints are small. Thus, the posture is represented
only by the angles of the ankle joint.

These two segments are connected at the ankle joint,
which is located at the center of the supporting segment
symmetrical to the anterior–posterior direction and as low
as the ground surface. The angle and angular velocity
of the joint are detectable, and torque can be generated
for balance control. The supporting segment contacts the
ground at two points only, the toe and the heel. Here, the
vertical components of ground reaction forces FT (at the
toe) and FH (at the heel) are detectable. The friction be-
tween the supporting segment and the ground is assumed
to be so large that the supporting segment does not slip
on it. To this simple model, an unknown external force
is exerted, whose horizontal and vertical components are
Fx and Fy , respectively. This external force represents the
conditions of the environment.

If static balance is maintained, the supporting segment
neither moves nor rotates. Only the inverted pendulum is
mobile, and its motion is described as

I θ̈ =MLg sin θ +FxL cos θ −FyL sin θ + τ, (1)
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where M is the mass of the inverted pendulum, I is the iner-
tial moment of the inverted pendulum around the ankle
joint, L is the length between the ankle joint and the COG
of the inverted pendulum, θ is the ankle joint angle from
the vertical direction, τ is the ankle joint torque, and g is
the gravitational acceleration.

The internal force between the two segments, fx and
fy , is described as

fx = MLθ̈ cos θ −MLθ̇2 sin θ −Fx, (2)
fy = −MLθ̈ sin θ −MLθ̇2 cos θ +Mg −Fy. (3)

From the balance of moment around the heel and toe, the
ground reaction forces, FT and FH , are described as

FT = (−τ/�+m+fy)

2
(4)

FH = (τ/�+m+fy)

2
(5)

where m is the total mass of the foot, � represents the dis-
tance from the ankle joint to the toe or heel. From (4) and
(5), we can obtain the relation between FH −FT and τ ,

FH −FT = τ

�
. (6)

We use this relation for the analysis in the next section.
For convenience of calculation, we transform the mo-

tion equation (1) as follows:

I θ̈ = (Mg −Fy)L sin θ +FxL cos θ + τ

= AL sin (θ − θf )+ τ, (7)

where

A=
√

(Mg −Fy)2 +F 2
x , (8)

and θf , as shown in Fig. 1, is a constant that satisfies these
equations,

sin θf = −Fx

A
, cos θf = (Mg −Fy)

A
. (9)

Note that A as well as θf depend on an unknown external
force, i.e., Fx and Fy .

2 Balance control under constant external force

2.1 Goal of control

In order to maintain body balance, both FT and FH

must be kept positive. Furthermore, the stability margin
(McGhee and Frank 1968) will be greatest when the weight
of body is evenly distributed between the toe and the heel.
Thus, the goal of balance control here was to converge
FH −FT to zero without allowing the inverted pendulum
to fall.

2.2 PD and ground reaction force feedback control

According to (6), if we define the ankle joint torque as

τ =−KI

∫
(FH −FT )dt, (10)

then FH − FT will certainly converge to zero. However,
this control law does not result in the maintenance of an
upright posture. For example, assume that the inverted
pendulum leans slightly to the toe side. Then, more weight
is distributed to the toe than to the heel, i.e., FT > FH .
According to (10), positive torque is exerted, which make
the inverted pendulum lean more to the toe side.

To achieve our goal, we add proportional and deriv-
ative (PD) control, which stabilizes the upright posture.
The control law we propose here is

τ =−Kdθ̇ −Kpθ +Kf

∫
(FH −FT )dt, (11)

Here, Kd , Kp, and Kf are feedback gains.

2.3 Stationary state

Analyzing the dynamics determined by the control law
(11), we introduce a new state variable τf which is defined
as

τf =
∫

(FH −FT )dt. (12)

Then, (11) becomes

τ =−Kdθ̇ −Kpθ +Kf τf , (13)

Substituting τ in (7) yields

I θ̈ =AL sin (θ − θf )−Kdθ̇ −Kpθ +Kf τf . (14)

On the other hand, differentiating (12) and next using (6)
and (13), we obtain

τ̇f = (−Kdθ̇ −Kpθ +Kf τf )/�. (15)

The stationary state is calculated by putting θ̈ = θ̇ = 0
and τ̇f = 0. Most importantly, FH − FT = 0 is certainly
achieved by (11), since FH − FT ≡ τ̇f = 0. On the other
hand, the stationary posture is obtained by solving the
following two algebraic equations

AL sin (θ − θf )−Kpθ +Kf τf =0, (16)

(−Kpθ +Kf τf )

�
=0. (17)

As a result, θ = θf is satisfied at the stationary state. This
implies that the stationary posture adaptively changes
with the environmental conditions, since θf depends on
the external forces Fx and Fy . At this posture, the inverted
pendulum orients the direction of the force resulting from
the gravitational and external forces, as shown in Fig. 2.
This implies that the moments generated by the two forces
cancel each other out around the ankle joint. Therefore,
the ankle joint requires little torque or, theoretically, none
at all.

2.4 Stability analysis

To examine the stability of this stationary state, we regard
θ , θ̇ , and τf as state variables, and we linearize the differ-
ential equations around the equilibrium point, i.e., θ = θf
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Fig. 2. Stationary posture by proposed control law (11)

and τf =Kpθf /Kf . The linear differential equation is




θ̇1

θ̇2
τ̇f


=




0 1 0

AL−Kp

I
−Kd

I

Kf

I

−Kp

�
−Kd

�

Kf

�




[
θ1
θ2
τf

]
, (18)

where θ1 =θ and θ2 = θ̇ . The characteristic equation of this
linear system is given by

λ3 +p2λ
2 +p1λ+p0 =0 , (19)

where

p2 = Kd�−Kf I

I�
,p1 = Kp −AL

I
,p0 = Kf AL

I�
. (20)

According to Routh-Hurwitz criterion, the necessary and
sufficient conditions to stabilize the equilibrium point are
given as

p0 >0, p1 >0, p2 >0, p1p2 −p0 >0 (21)

From these inequalities, we can derive the following con-
ditions:

Kp >AL>0 (22)
�

I
Kd >Kf >0 (23)

(Kd�−Kf I)Kp >Kd�AL . (24)

In summary, if the feedback gains are set so that (22)–
(24) hold, the stationary posture in Fig. 2 becomes locally
asymptotically stable.

3 Balance control under periodic external force

3.1 Goal of control

A feature of the control law in the previous section exists
in the feedback on ground reaction forces. Once the sta-
tionary state is achieved, however, the adequate posture in
the current environment becomes known from the station-
ary posture. If this posture is memorized in the controller,

balance is maintained only by positional control without
feedback of ground reaction forces, which was essential
information in an uncertain environment. Now, we extend
the external force from constant to periodic, and aim to
compose a control law for the periodic external forces that
dispenses the information on ground reaction forces after
learning it. For this purpose, we construct an ankle joint
torque from two terms as

τ = [F.F ]+
[
−Kdθ̇ −Kpθ +Kf

∫
(FH −FT )dt

]
(25)

The first term compensates the periodic external forces in a
feedforward manner, while the second term is the same as
(11), including the feedback on the ground reaction force.
We will compose a learning rule such that the second term
gradually decreases.

3.2 Linear parameterization on unknown parameters

We construct the feedforward term by estimating the peri-
odic external force. Here, we assumed that the period of
the periodic external force Te is known. Then, the external
force is expanded to a Fourier series

Fx =
n∑
k

(
α

(x)
k Sk +β

(x)
k Ck

)
(26)

Fy =
n∑
k

(
α

(y)

k Sk +β
(y)

k Ck

)
(27)

where Sk = sin kωet , Ck = cos kωet , ωe = 2π/Te. Substi-
tuting (26) and (27) into (1), we obtain

I θ̈ −MLgS −
n∑
k

(
α

(x)
k Sk +β

(x)
k Ck

)
LC

+
n∑
k

(
α

(y)

k Sk +β
(y)

k Ck

)
LS = τ , (28)

where C = cos θ and S = sin θ . The left-hand side can be
written in the linear parameterization form on unknown
parameters,

Yσ = τ (29)
Y = [

θ̈ , S, S0C,C0C,S0S,C0S,

. . . , SnC,CnC,SnS,CnS] (30)

σ =
[
I,−MgL,−Lα

(x)

0 ,−Lβ
(x)

0 ,Lα
(y)

0 ,Lβ
(y)

0 ,

. . . ,−Lα(x)
n ,−Lβ(x)

n ,Lα(y)
n ,Lβ(y)

n

]T
. (31)

By learning, we estimate the unknown parameters.

3.3 Control and learning method

We define a new unknown parameter, φ, based on σ in the
above equation,

φ =KIσ (32)

KI = Kd�

Kd�−Kf I
. (33)
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Using the estimated value of this parameter, i.e., φ̂, we
propose a control law as
τ =Yrφ̂ −Kds (34)
Yr = [

θ̈r , S, S0C,C0C,S0S,C0S,

. . . , SnC,CnC,SnS,CnS] (35)

θ̇r = −Kp

Kd

θ (36)

s = θ̇ − θ̇r − Kf

Kd

τf . (37)

In addition, we define the learning law of φ̂ as
˙̂
φ =−�YT

r s , (38)
where, � is a positive definite diagonal matrix. Note that
the first term does not contain feedback information on
the ground reaction forces, and that the second term −Kds
is the same as the right-hand side of (25).

3.4 Behavior analysis

3.4.1 Assumptions. In order to make the analysis simple,
we assume the following:
A1 The periodic external force whose period is known is

bounded and differentiable.
A2 In the initial state, φ̂(0)=0.
A3 The supporting segment neither moves nor rotates by

this control without a learning law.
A4 The learning law does not cause tumbling under

assumption A3.
Assumption A2 eliminates the action of the first term in
(34) in the initial state. Assumption A3 implies that the
control law (11) can maintain the balance against the peri-
odic external force satisfying assumption A1. Then, the
magnitude of the external forces not causing the tumble is
evaluated by A in (22)–(24) in the no-learning case. Finally,
assumption A4 excludes the case where the leaning results
in tumbling; the validity of this assumption will be exam-
ined by the simulation.

Under these assumptions, we show that the second term
decreases by the learning law, and next that the learning
law has no effect on the torque profile under some condi-
tions.

3.4.2 Decrement of the feedback term. Consider the fol-
lowing function as a candidate Lyapunov function:

V = 1
2
KIIs2 + 1

2
φ̄T �−1

φ̄(≥0) , (39)

where φ̄ = φ̂ −φ. Assumption A3 ensures static balance.
This implies that (22)–(24) holds, and hence KI >0. Differ-
entiating (39), we obtain

V̇ =KIIsṡ + ˙̂
φ

T

�−1
φ̄, (40)

and, from the definition of Yr ,

I θ̈r −MLgS −
n∑
k

(
α

(x)
k Sk +β

(x)
k Ck

)
LC

+
n∑
k

(
α

(y)

k Sn +β
(y)

k Ck

)
LS =Yrσ . (41)

Subtracting (41) from (28),

I (θ̈ − θ̈r )= τ −Yrσ , (42)

is obtained. On the other hand, differentiating (12) and
using (6),

τ̇f = 1
�
τ . (43)

Multiplying IKf /Kd by (43) and subtracting it from (42),
we obtain

I

(
θ̈ − θ̈r − Kf

Kd

τ̇f

)
=

(
1− IKf

Kd�

)
τ −Yrσ (44)

Furthermore, multiplying both sides of the above equation
by KI and using (37), (33), (32) and (34),

KII ṡ =Yrφ̄ −Kds . (45)

Substituting (40) for this equation yields

V̇ = sYr φ̄ −Kds
2 + φ̄T �−1 ˙̂

φ

= φ̄T (Y T
r s +�−1 ˙̂

φ)−Kds
2 , (46)

but, using (38), we finally obtain

V̇ =−Kds
2 ≤0 . (47)

To show that V̇ converges to 0, we show the uniform con-
tinuity of V̇ . All we have to do is to show the boundedness
of V̈

V̈ =−2Kdsṡ . (48)

Because V ≥ 0 and V̇ ≤ 0, V is bounded, implying that s
and φ̄ are also bounded. The boundedness of φ̄ leads to
the boundedness of φ̂. From assumption A1, on the other
hand, the dynamics become differentiable with respect to
θ , θ̇ , τf , φ̂, and t , and the solution of this equation is
also differentiable (Wiggins 1990). Furthermore, assump-
tion A3 leads to the boundedness of θ and of θ̇ . Thus,
the boundedness of θ̇r and that of Yr are proven by using,
respectively, (36) and (35). In (45), ṡ is bounded since KI

and I are constants. The boundedness of V̈ is derived from
the boundedness of s and of ṡ.

Using the Lyapunov-like lemma (Slotine 1991), we con-
clude that V̇ converges to 0, implying that s →0.

3.4.3 Change in torque profile by learning. From assump-
tion A2, the torque is generated by (13) before learning.
Then, the dynamic behavior is determined by (1), (13) and
(43). Eliminating τ in (1) and (13) using (43), the behav-
ior of this equation is represented by the following two
equations:

I θ̈ =MgL sin θ +Fe(t)+�τ̇f (49)
Kf τf −�τ̇f =Kdθ̇ +Kpθ . (50)

Here, the effect of the external force is summarized in Fe(t)
after linearization.

Next, we consider dynamic behavior after learning.
Then, a new constraint s = 0 is formed by the learning
law. Therefore, the dynamics are determined by (1), (43)
and the new relation,

−Kdθ̇ −Kpθ +Kf τf =0 . (51)
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Fig. 3. External force in simulation. α is a time-varying parameter
that define the dynamics of the external force. The external force in
the left figure is equivalent to those that is exerted to the inverted
pendulum on the slope with the gradient α

Eliminating τ in the same manner, we obtain the dynamics
as follows:

I θ̈ =MgL sin θ +Fe(t)+�τ̇f (52)
Kf τf =Kdθ̇ +Kpθ . (53)

Consequently, the difference in the dynamics originates
from whether the controller dynamics is described by (50)
or by (53). In order to examine what effect this differ-
ence brings to torque generation, we calculate the transfer
function from the external force Fe to the joint torque τ ,
since the reason why the joint torque is required is that the
external force disturbs the balance. The transfer function
before learning Hb is

Hb(p)=
Kf (p2I −MgL)

(
1−p �

Kf

)

p�(pKd +Kp)
, (54)

while the one after learning Ha is

Ha(p)= Kf (p2I −MgL)

p�(pKd +Kp)
. (55)

Here p represents the differential operator, and the cal-
culation is made after linearization around the upright
posture.

If Kf � �, then we can regard that |p�/Kf | � 1 and
hence Hb(p) and Ha(p) are approximately the same. Thus,
the same torque profiles are produced from the external
force, implying that the torque profile is invariant inde-
pendent of the learning.

3.4.4 Storing torque pattern. We have shown in Sect. 3.4.2
that the second term in (34), including the feedback on
ground reaction forces, decreases by the learning law. We
have also shown, in Sect. 3.4.3, that learning result has no
effect on the torque profile if Kf ��.

These findings establish the following scenario. At first,
the torque consists of feedback information including the
information on the ground reaction forces. However, the
feedback term decays as the learning process continues,
while the feedforward term, in the sense that it contains
no feedback information on the ground reaction forces,
grows. Because the torque profile is invariant, the feed-
back term is copied to the feedforward term according to
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Fig. 4. Results of PD control. Top: time course of ankle joint angle
θ and the parameter α in Fig. 3. Bottom: time course of ground reac-
tion force FH and FT that is required to keep the foot segment still.
Negative ground reaction force implies that PD control did not avoid
the tumbling with respect to periodic external force in this simulation

the learning. Consequently, the balance is kept without the
feedback on ground reaction forces that was important to
behave in an uncertain environment. In other words, the
torque pattern that enables balancing against the periodic
external force is internally generated.

Indeed, the balance would be kept by directly memo-
rizing the time course of the torque pattern, e.g., by the
discrete-time sampling, but here the torque is represented
by the weighted sum of basis functions, i.e., the compo-
nents of Yr . Then, the information on the environment is
integrated with the weight of the basis functions. In prac-
tice of biped balance, the high-frequency torque is seldom
required since the external force with high frequency is
cut by the low-pass property of the pendulum dynamics.
In such a case, we can approximate the torque pattern with
small number of the Fourier series. Then, the number of
Fourier coefficient that should be learnt becomes small
and less storage space is required in a mathematical point
of view.

This is advantageous in that it requires less storage.
The time evolution of the torque during the learning

has not been discussed in this section because of the non-
linearity of the dynamics. However, we evaluate it using
simulation in the next section.
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4 Simulations

In computer simulations, we use a two-link model as illus-
trated in Fig. 2. The parameters are set as follows: M =
2, L= 0.5, �= 0.05, I = 5ML2/4. We define the periodic
external force as
Fx =MgL sin α (56)
Fy =MgL(1− cos α) (57)

α = π

18
(1− cos 2πfet) (58)

where we set fe = 0.2 so that the period of the external
force becomes 5. As illustrated in Fig. 3, this external force
equivalently expresses the gravitational effect on a slope
whose gradient is α. This implies that, when α =αg, θ =
−αg is the preferable posture, because the inverted pen-
dulum orients the direction of the force resulting from
the gravitational and external forces, and then FT and FH

become equal.
In simulations, the differences among a conventional

PD control, the control law (13), and the control law
(34) plus the learning law (38) are examined. The param-
eters are set as Kd = 500, Kp = 1000, Kf = 25, � =
diag[100, . . . ,100], n=10. Note that the common param-
eters have the same values to clarify the effects of new
terms or new dynamics. The results are shown in Figs. 4,
5, 6, respectively.

In the case of PD control, the ankle joint angle θ stays
around 0 due to the high feedback gain (Fig. 4 top). How-
ever, ground reaction forces FT and FH that are required
to prevent the foot segment from rotating often take nega-
tive values (Fig. 4 bottom), indicating that tumbling would
occur for the usage of high-gain PD control in an actual
situation.

While, on the other hand, we introduce feedback on
ground reaction forces, the ankle joint angles are adjusted
according to the periodic external forces (Fig. 5 top). Ow-
ing to this behavior, the ground reaction force never takes
a negative value (Fig. 5 middle). The bottom graph in
Fig. 5 shows the torque profile in this simulation. Com-
parisons of these results indicate the importance of the
ground reaction force feedback in controlling biped bal-
ance in an uncertain environment.

Furthermore, we add the learning law to our control
law. As shown in Fig. 6, the profiles of the ankle joint an-
gle (top), ground reaction forces (middle), and total ankle
joint torque (bottom) do not change so much, and balance
is kept all the same. However, as shown in the bottom
graph of Fig. 6, we can observe the change in the com-
ponents of ankle joint torque: the term that includes the
feedback on the ground reaction forces decreases, while
the term that doesn’t include it increases to occupy almost
all of the total ankle joint torque.

In summary, although information on the ground reac-
tion forces is essential to maintaining balance adaptively
in an uncertain environment, it becomes unnecessary once
the uncertain factors regarding to the regularity in a
steady environment, which here corresponds to the con-
stant parameters expressing the periodic external forces,
are learned. Then, a torque pattern adequate to the current
environment is internally generated.

Fig. 5. Results of feedback control of ground reaction forces. Top
and middle graph represent the same variables as in Fig. 4. Bottom:
the time course of ankle joint torque

5 Discussion

Control schemes in which feedforward control replaces
feedback control have been proposed in many works
(Kawato et al. 1987; Gomi and Kawato 1993; Slotine
1991). Especially, along the lines of feedback error learn-
ing, Gomi and Kawato (1992) propose a model of vermis
in spinocerebellum that acts as an adaptive feedback con-
troller for human posture control. The learning in those
works is a kind of supervised learning that requires explicit
reference signals for desired motions. In our framework,
however, these reference signals are not indispensable: the
torque pattern is self-organized with respect to external
forces. Such a configuration is possible by virtue of feed-



248

α

(rad)

(s)

θ

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30

FT

FH

(N)

(s)-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30

total

1st term 2nd term

(Nm)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(s)
0 5 10 15 20 25 30

Fig. 6. Results of feedback control of ground reaction forces with
learning. The graphs represent time course of the same variables as
in Fig. 5. In the bottom graph, however, the component of the ankle
joint torque, i.e., the first and second term in (34) is also illustrated.
As the learning progresses, the second term is gradually replaced by
the first term

back of the force (ground reaction forces) information as
well as the static nature of biped balance control. The goal
of balance control is generally to keep the position of CoP
of ground reaction forces at a constant desired position
without falling over even in the midst of disturbances (see
the next paragraph). Therefore, balancing motions are not
given as explicit reference signals, but emerges as a result
of positional feedback of CoP. Then, the construction of
control scheme including force signal requires some mod-
ification of mathematical treatments to prove the conver-
gence of the learning dynamics. In addition, to cope with a

disturbance, in our framework the feedforward controller
learns the dynamics not only of the controlled object but
also of the environment represented by a periodic external
force. Thus, the stationary condition is required to accom-
plish the learning. After the learning, the feedforward con-
troller works as a motion pattern generator that directly
outputs the torque required achieving balance under the
periodic external force.

The analysis in this paper requires some assumptions
about the biped-balancing model. However, some of those
assumptions can be removed. First, the shape of a support-
ing segment can be extended to that of a normal one, with
unequal horizontal distance from the ankle joint to the
heel and toe as well as various distances from the ankle
joint to the ground level. These extensions can be seen in
the Appendix. Second, the assumption that the foot con-
tacts the ground at two points can be removed; making
FH − FT = 0 is equivalent to controlling the CoP to the
midpoint of the supporting segment. The CoP position
from the midpoint of the supporting segment, PCoP , is
given as

PCoP = FH −FT

FH +FT

·�. (59)

When the motion of the supporting segment is slow, FH +
FT is approximately equal to the total mass (M + m)g.
Therefore, (11) becomes

τ =−Kdθ̇ −Kpθ +K ′
f

∫
PCoP dt, (60)

where K ′
f is constant, satisfying

K ′
f = K(M +m)g

�
. (61)

This expression implies that, even though the foot segment
contacts the ground at many points, our feedback control
and learning laws are feasible if the position of CoP is
detectable. Thirdly, based on the above consideration that
the balance control law in this paper is equivalent to the
feedback control of the CoP position, the extension to
three-dimensional balance control is not difficult.

We here considered motion pattern learning based on
regularities in the environment. In our framework, a new
motion pattern should be learned for even slight change in
environmental conditions. One possible method to reduce
amount of the information processing on the learning is
to retrieve, from a variety of stored motion patterns, an
adequate pattern that matches an environmental pattern
already experienced. Although this strategy reduces the
need for massive memory space to store many kinds of
movements for all environmental conditions, the pattern-
ization of motor behaviors is a common strategy observed
in biological motions. The motion pattern selection strat-
egy requires a recognition process that determines whether
a new pattern should be learned or the memorized pattern
should be retrieved for given environmental conditions.
This topic is beyond the scope of this paper, but it is an
important problem to address.
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Fig. 7. Block diagram of control scheme. GRF denotes ground reaction force, and p is a differential operator

6 Conclusion

In this paper, we have considered balance control in a
steady environment, which contains an unknown regu-
larity such that constant and periodic external forces are
exerted. The control scheme we have proposed here is de-
picted in Fig. 7. In order to maintain balance adaptively
against unknown external forces, information on ground
reaction forces is crucial. However, because the external
forces are periodic and their periods are known, the reg-
ularity observed in the steady environment (that is, the
periodicity) is learned and is incorporated into the control-
ler through the balancing motion. As a result, the adap-
tive balance control dispenses feedback information on
the ground reaction forces. While this information is be-
ing learned, the output of the feedback controller for the
ground reaction force is copied to the feedforward con-
troller in the sense that this controller does not contain
the feedback on the ground reaction forces. The output of
the feedforward controller is constructed by the weighted
sum of the basis functions that mainly expand the external
forces, and hence the weight is stored as new knowledge
of the current environment.

For future works, we are considering the experimen-
tal verification of this theory, its extension to an external
force having an unknown period, and its application to
locomotion control.

A Appendix: Extension to normal foot shape

A.1 Extensional model

The model for biped balance is generalized to a normal
foot shape, as shown in Fig. 8. Notations are as follows:
�T and �H are the horizontal distances from the ankle joint
to, respectively, the toe and heel; �G is the horizontal dis-
tance from the ankle joint to the CoG of the foot; and �A

is the ankle joint height.

From the balance of moment, the relation between
ground reaction forces and ankle joint torque is given as

FT = − 1
2�

τ +mT g + �H

2�
fy − �A

2�
fx (62)

FH = 1
2�

τ +mHg + �T

2�
fy + �A

2�
fx (63)

where 2�= �T + �H , fx and fy are defined in (2) and (3),
and mT and mH are the weight of the foot segment placed
on the toe and heel, respectively.

mT = �H +�G

2�
m, mH = �T −�G

2�
m . (64)

In addition, we can consider not only external force but
also external torque τe, which is also unknown and is ex-
erted to the inverted pendulum. Then, the motion equa-
tion of the inverted pendulum is given as

I θ̈ = (Mg −Fy)L sin θ +FxL cos θ + τe + τ

= AL sin (θ − θf )+ τe + τ (65)

Now, we define the ankle joint torque as (11) (or (13)).
Then, we discuss the stationary state and its stability.

A.2 stationary posture

From (62) and (63), we obtain

τ̇f = 1
�
τ + (mH −mT )g + �T −�H

2�
fy + �A

�
fx (66)

Here, τf is defined in (12). The stationary states can be
calculated by setting the dot term to zero in (13), (65), and
(66). At the stationary state, fx =−Fx and fy =Mg −Fy

are satisfied. Thus, the stationary state is expressed by the
solutions of these algebraic equations:

AL sin (θ̄ − θf )+ τe + τ̄ =0 (67)
1
�
τ̄ + (mH −mT )g + �T −�H

2�
(Mg −Fy)− �A

�
Fx =0 , (68)
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Fig. 8. Extended model with general foot shape. Notations are the
same as in Fig. 1 besides external moment τe, horizontal distance
from ankle joint to heel �H , to toe �T and the CoG of the foot seg-
ment �G and the ankle joint height �A

where variables with a bar indicate constant values in the
stationary state. From (67) and (68), non-zero torque

τ̄ =−(mH −mT )g�

−1
2
(�T −�H )(Mg −Fy)+�AFx (69)

is necessary to maintain the stationary posture. Substitut-
ing the above equation to (62) and (63), we obtain

FT =FH = 1
2
(mH +mT )g + 1

2
(Mg −Fy) (70)

This equation means that the CoP stays at the midpoint of
the foot segment. In the case of a normal foot shape, the
moment around the midpoint of the foot segment is can-
celled by slanting the body segment, whose posture, i.e., θ̄ ,
is determined so that the moment caused by external force,
external torque, and ankle joint torque are cancelled, as
denoted by (67). This strategy requires a non-zero torque
of the ankle joint at the stationary state.

A.3 stability

The angle of the ankle joint at the stationary state, which
should satisfy the algebraic equations (67) and (68), is de-
noted by θ = θ̄ . We linearize (7) and (66) around the sta-
tionary state:

I θ̈ = (AL cos (θ̄ − θf )−Kp)θ −Kdθ̇ +Kf τf . (71)

τ̇f = 1
�
(−Kdθ̇ −Kpθ +Kf τf )

−�T −�H

2�
MLθ̈ sin θ̄ + �A

�
MLθ̈ cos θ̄ . (72)

Here, fx and fy are linearized around θ = θ̄ :

f̄x =MLθ̈ cos θ̄ −Fx (73)
f̄y =−MLθ̈ sin θ̄ +Mg −Fy (74)

The characteristic equation of this linear differential equa-
tion is given as

λ3 +p2λ
2 +p1λ+p0 =0 (75)

where

p2 = Kd�−Kf (I + δ(θ̄))�

I�
, (76)

p1 = Kp −AL cos (θ̄ − θf )

I
, (77)

p0 = Kf AL cos (θ̄ − θf )

I�
(78)

δ(θ̄)= ML

�

(
1
2
(�T −�H ) sin θ̄ −�A cos θ̄

)
. (79)

Thus, the necessary and sufficient conditions under which
the stationary state becomes locally stable are expressed
using the Routh–Hurwitz method as

Kd >

(
I

�
+ δ(θ̄)

)
Kf (80)

Kp >AL cos (θ̄ − θf ) (81)
Kf >0 (82)

(Kd −Kf δ(θ̄))(Kp −AL cos (θ̄ − θf ))>
I

�
KpKf (83)

In the case of the simple model in Fig. 1, θ̄ = θf and
δ(θ̄)=0. Then (80)–(83) are equivalent to (22)–(24).

References

Chew, Chee-Meng, Gill A. Pratt (2002) Adaptation to load vari-
ations of a planar biped: height control using robust adaptive
control. Robotics Autonomous Syst 35:1–22

Chow, Daniel HK, Andrew D. Holmes, Alex TK, Tse (2002)
Sudden release during a pulling task: the effect of release load
on stance perturbation and recovery. Gait Posture 15:266–273

Gomi H, Kawato M (1992) Adaptive feedback models of
the vestibulocerebellum and spinocerebellum. Biol Cybern
68:105–114

Gomi H, Kawato M (1993) Neural network control for a closed-
loop system using feedback error learning. Neural Netw
6:933–946

Goswami A (1999) Postural stability of biped robots and
the foot-rotation indicator (fri) point. Int J Robotics Res
18(6):523–533

Haung Q, Kaneko K, Yokoi K, Kajita S, Kotoku T, Koyochi
N, Arai H, Inamura H, Komoriya K, Tanie K (2000) Bal-
ance control of a biped robot combining off-line pattern with
real-time modification. In: Proceedings of 2000 IEEE inter-
national conference on robotics and automation 3:3346–3352

Hay L, Redon C (1999) Feedforward versus feedback control
in children and adults subject to a postural disturbance. Exp
Brain Res 125:153–162

Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The devel-
opment of honda humanoid robot. In: Proceedings of 1998
IEEE international conference on robotics and automation
3:1321–1326

Horak FB, Nashner LM (1986) Central program of postural
movements: adaptive to alerted support-surface configura-
tions. J Neurophysiol 55(6):1369–1382

Slotine JE, Li WP (1991) Applied nonlinear control. Prince Hall,
Englewood Cliffs

Kawasaki H, Ito S, Ramli RB (2003) Adaptive decentralized
coordinated control of multiple robot arms. Preprints of the
7-th IFAC symposium on robot control 2:461–466



251

Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-
network model for control and learning of voluntary move-
ment. Biol Cybern 57:169–185

Ko YG, Challis JH, Newell KM (2001) Postural coordination
patterns as a function of dynamics of support surface. Hum
Mov Sci 20:737–764

Kuroki Y, Fujita M, Ishida T, Nagasaka K, Yamaguchi J (2003)
A small biped entertainment robot exploring attractive appli-
cations. In: Proceedings of 2003 IEEE international confer-
ence on robotics and automation, pp 471–476

Anthony LM, Ralph Etienne-Cummings, Mitra J. Hartmann, Z
Rong Xu, Cohen AH (2003) An in silico central pattern gen-
erator: silicon oscillator, coupling, entrainment, and physical
computation. Biol Cybern 88:137–151

McGhee RB, Frank AA (1968) On the stability properties of
quadruped creeping gaits. Math Biosci 3:331–351

Nagasaka K, Inoue H, Inaba M (1999) Dynamic walking pat-
tern generation for a humanoid robot based on optimal gra-
dient method. In: Proceedings of 1999 IEEE international
conference on system, man and cybernetics VI:908–913

Nakamura NS, Sampei M (2002) Balance control analysis of
humanoid robot based on zmp feedback control. In: Pro-
ceedings of the 2002 IEEE/RSJ international conference on
intelligent robots and systems pp 2437–2442

Nashner Lewis M (1981) Analysis of stance posture in humans.
In: Towe AL, Luschei ES, (eds) Handbook of behavior nero-
biology 5 Chap. 10. pp 527–565, Plenum Press, New York

Nishiwaki K, Kagami S, Kuniyoshi Y, Inaba M, Inoue H (2002)
Online generation of humanoid walking motion based on a
fast generation method of motion pattern that follows desired
zmp. In: Proceedings of the 2002 IEEE/RSJ international con-
ference on intelligent robots and systems pp 2684–2689

Naomichi O, Yamazaki N (2001) Generation of human bipedal
locomotion by a bio-mimetic neuro-musculo-skeletal model.
Biol Cybern 84:1–11

Park JH, Cho HC (2000) An on-line trajectory modifier for the
base link of biped robots to enhance locomotion stability.
In: Proceedings of 2000 IEEE international conference on
robotics and automation, pp 3353–3358

Sugihara T, Nakamura Y, Inoue H (2003) Realtime humanoid
motion generation through zmp manipulation based on in-
verted pendulum control. In: Proceedings of 2003 IEEE inter-
national conference on robotics and automation, pp 471–476

Taga G (1995) A model of the neuro-musculo-skeletal system
for human locomotion. Biol Cybern 73:97–111

Takanishi A, Egusa Y, Tochizawa M, Takeya T, Kato I (1988)
Realization of dynamic biped walking stabilized by trunk mo-
tion. In: Proceedings of ROMANSY7 pp 68–79

Vukobratovic M, Borovac B, Surla D, Stokic D (1989) Biped
locomotion, scientific fundamentals of robotics 7. Springer,
Berlin Heidelberg New York

Wiggins Stephen (1990) Introduction to applied nonlinear
dynamical systems and chaos. Springer, Berlin Heidelberg
New York


