
Abstract. Locomotion involves repetitive movements
and is often executed unconsciously and automatically.
In order to achieve smooth locomotion, the coordina-
tion of the rhythms of all physical parts is important.
Neurophysiological studies have revealed that basic
rhythms are produced in the spinal network called, the
central pattern generator (CPG), where some neural
oscillators interact to self-organize coordinated rhythms.
We present a model of the adaptation of locomotion
patterns to a variable environment, and attempt to
elucidate how the dynamics of locomotion pattern
generation are adjusted by the environmental changes.
Recent experimental results indicate that decerebrate
cats have the ability to learn new gait patterns in a
changed environment. In those experiments, a decere-
brate cat was set on a treadmill consisting of three
moving belts. This treadmill provides a periodic pertur-
bation to each limb through variation of the speed of
each belt. When the belt for the left forelimb is
quickened, the decerebrate cat initially loses interlimb
coordination and stability, but gradually recovers them
and ®nally walks with a new gait. Based on the above
biological facts, we propose a CPG model whose
rhythmic pattern adapts to periodic perturbation from
the variable environment. First, we design the oscillator
interactions to generate a desired rhythmic pattern.
In our model, oscillator interactions are regarded
as the forces that generate the desired motion pattern.
If the desired pattern has already been realized, then the
interactions are equal to zero. However, this rhythmic
pattern is not reproducible when there is an environ-
mental change. Also, if we do not adjust the rhythmic
dynamics, the oscillator interactions will not be zero.
Therefore, in our adaptation rule, we adjust the mem-
orized rhythmic pattern so as to minimize the oscillator
interactions. This rule can describe the adaptive behav-
ior of decerebrate cats well. Finally, we propose a
mathematical framework of an adaptation in rhythmic
motion. Our framework consists of three types of

dynamics: environmental, rhythmic motion, and adap-
tation dynamics. We conclude that the time scale of
adaptation dynamics should be much larger than that of
rhythmic motion dynamics, and the repetition of rhyth-
mic motions in a stable environment is important for the
convergence of adaptation.

1 Introduction

Basic movements of animals, such as walking, swim-
ming, breathing, and feeding, are important for their
existence and are executed very frequently. It is possible
to perform these movements unconsciously, in other
words, automatically. They consist of reproducible and
repetitive movements of several physical parts of the
body. Such periodic motions are in¯uenced by the
rhythmic pattern produced in the nervous system.
Neurophysiological studies indicate that the basic
rhythms are intrinsically generated in spinal neuronal
networks, which include neural oscillators (Grillner
1975; Delcomyn 1980).

Such a rhythm generator is called a central pattern
generator (CPG), and it has been mathematically mod-
eled using coupled oscillator dynamics in many studies
(Cohen et al. 1982; SchoÈ ner et al. 1990; Yuasa and Ito
1990; Kimura et al. 1993, 1994; Collins and Richmond
1994; Taga 1995a, b). However, discussion on how the
rhythmic behavior changes in a variable environment is
insu�cient. Animals actually show adaptive behaviors
to a new environment. Such adaptation requires coor-
dination of the rhythms, which is important for the
smooth execution of rhythmic motions.

Neurophysiological studies focusing on the adapt-
ability of quadrupedal locomotion to environmental
changes have recently been reported (Yanagihara et al.
1993; Yanagihara and Kondo 1996). These studies were
performed on decerebrate cats that exhibited stable lo-
comotion on a treadmill as well as on the ¯oor, in the
same manner as intact cats. Once the treadmill belts
began to move, decerebrate cats automatically per-
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formed stable locomotion. The treadmill consisted of
three moving belts. As shown in Fig. 1, in the experi-
ment, the left forelimb (LF) and the left hindlimb (LH)
of the cat were positioned on two independent belts, and
the two right limbs [right forelimb (RF) and right
hindlimb (RH)] were both positioned on the remaining
belt. In the unperturbed case, when the three belts were
driven at the same slow speed, the cat maintained a
stable gait pattern called walk. Then, the speed of the LF
belt was increased by 1.7 times (61 cm/s) that of the
others (36 cm/s). In this case, whenever the cat placed its
left forelimb onto the belt, the limb was subject to a
perturbation. During the initial stage of perturbation,
locomotion was not stable, i.e., there was an enhance-
ment in the ¯uctuations of the step cycle durations.
However, the cat gradually adapted to the perturbed
environment and began to walk with a new steady gait
pattern (Fig. 2c).

The result of adaptation can also be seen in the du-
ration of the bisupport phase of the two forelimbs. The
experimentally obtained gait diagrams are shown in
Fig. 2. There are two bisupport phases in one step cycle,
marked by B1 and B2. In the B1 bisupport phase, the left
forelimb ®rst provides support, followed by the right
forelimb. Conversely, in the B2 bisupport phase, the
right forelimb ®rst provides support, followed by the left
forelimb. It was found that, during normal locomotion,
the two bisupport phases are of equal duration (Fig. 2a).
However, perturbation makes B1 shorter than B2

(Fig. 2b). This di�erence tends to decrease after the cat
has adapted to the new environmental conditions
(Fig. 2c). This indicates that the interlimb coordination,
which is disturbed by perturbation, is regained after
many steps. This interlimb coordination is important in
the execution of smooth and stable locomotion. Yana-
gihara and Kondo (1996) have also shown, using this
experimental paradigm, that nitric oxide (NO) in the
cerebellum plays a key role in motor learning. They ®rst
con®rmed that NG-monomethyl-D-arginine [D-NMMA],
which has no inhibitory e�ect on NO synthase, did not
abolish an adaptation. Next, they injected haemoglobin,
a NO scavenger, or NG-monomethyl-L-arginine L-
NMMA a NO synthase inhibitor, into the cerebellar
cortical locomotion area. In each case, no adaptation
occurred, i.e., locomotion did not become steady, and
interlimb coordination was not achieved. They consid-
ered that plasticity of synaptic transmission e�cacy,
which is a�ected by NO concentration, is essential in
motor learning. Although their work was on both the
cellular and the behavioral level, we focus here on the
behavioral level and undertake to explain it mathemat-
ically.

The essence of the adaptation mechanism is to adjust
an attractor corresponding to the memorized motion
pattern to render the motion more suitable for the new
environment. It was found in the experiment that at the
next trial after a rest, a decerebrate cat can walk under
the perturbed environment with the gait shown in
Fig. 2c immediately without a learning period. This
means that the decerebrate cat memorized the new gait
pattern, although it had memorized the gait pattern
shown in Fig. 2a before the adaptation. Thus, once
learning is achieved, the new stable pattern emerges
immediately since the new memorized locomotion pat-
tern becomes an attractor. However, some training is
necessary to change an attractor. In the experiment, a
number of steps was required before the decerebrate cat
acquired the new stable gait pattern.

We propose a mathematical model of adaptation to
periodic perturbation in quadruped locomotion. In the
next section, we compose a mathematical model of CPG
and de®ne its dynamics, followed by our concept of
adaptation. Simulation yields results similar to those of
the experiments with a decerebrate cat. Extending the
previous model, we will next consider common features
of adaptation in typical rhythmic motions and propose a
mathematical framework applicable to them. In the
fourth section, we mention the signi®cance of this work
among other related studies. It should be ®nally noted

Fig. 1. Perturbed locomotion of a decerebrate cat

Fig. 2a±c.Gait diagrams of cat locomotion. They change according to
perturbation as well as adaptation. a Normal locomotion, b before
adaptation, c after adaptation
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that our CPG model is merely a mathematical model of
animal behavior to explain our concept of adaptation.

2 Pattern generation in quadruped locomotion

2.1 Model of CPG

Considering gait patterns, we pay attention to the
relative phases among movements of four limbs. Al-
though each limb movement is dynamic and periodic,
the relative phases will be constant if the gait pattern is
stationary. Since the relative phases are speci®c to each
gait, we can regard the gait as ®xed points in a relative
phase space. If the relative phases can be set to any
value, we can design a gait pattern generator in
locomotion systems.

Yuasa and Ito (1990) used a gradient system to des-
cribe the dynamics of relative phases. A gradient system
is one whose dynamic property can be described by a
potential function. The potential function is de®ned on
the state space of a system and provides potential energy
at the system state. The gradient system evolves in a
manner in which the potential energy decreases maxi-
mally. If the potential energy cannot decrease, then the
system no longer evolves. Accordingly, minimum points
of the potential function correspond to the stationary
states of the gradient system. Yuasa and Ito (1990) de-
®ned one potential function in the relative phase space
so that the relative phases of gait (walk, trot, and gallop)
become its minimum point, and simulated the locomo-
tion pattern transition by changing the shape of the
potential function. In their approach, interactions
among oscillators (oscillator interactions) are repre-
sented by a gradient force.

Although Yuasa and Ito (1990) provided the neces-
sary and su�cient conditions which ensure that dy-
namics in the relative phase space can be described as a
gradient system, they did not examine how rhythm
patterns adapt to environmental changes. Thus, we add
here the adaptation mechanism to their approach so as
to treat adaptation in quadruped locomotion.

As shown in Fig. 3, we model the rhythm generator
of limb movement as four coupled oscillators. Accord-

ing to Yuasa and Ito's approach, we can uniquely design
the interactions using the potential function in the rel-
ative phase space. Note that this kind of connection (in
Fig. 3) is used only for mathematical convenience and
may not always coincide with the actual CPG connec-
tions in animals. However, it does not in¯uence the es-
sence of the problem.

In Fig. 4, the oscillator phase hi �i � 0; 1; 2; 3� repre-
sents a limb state in one cycle of movement. Here, we
have assumed that the oscillator phase coincides with the
phase of limb movement. Each limb can be in one of two
states: swing phase and stance phase. We divide the
phase space of oscillators �0; 2p� into two parts and as-
sign them to the swing phase and the stance phase. As
shown in Fig. 4, the range of cos hi � c corresponds to
the stance phase and the range of cos hi < c, to the swing
phase. Here c is determined from the duty factor b,
which denotes the proportion of the stance phase in one
step cycle. The relation between c and b is described by

c � cospb �1�

2.1.1 Dynamics in stance phase In the stance phase, limbs
are always in contact with the treadmill and cannot
move freely. Thus, we describe the dynamics of the
supporting limbs as

_hi � qi �i � 0; 1; 2; 3� �2�
where qi �i � 0; 1; 2; 3� is a variable representing the
speed of the treadmill belt. Equation (2) means that the
limb movement is forced by the treadmill.

2.1.2 Dynamics in swing phase In this phase, limbs can
move freely. Thus, it is possible to adjust the phase of
limb movement according to interactions among oscil-
lators.

_hi � xi � fi �i � 0; 1; 2; 3� �3�
Here xi �i � 0; 1; 2; 3� denotes angular velocity in the
swing phase, and fi �i � 0; 1; 2; 3� denotes the interaction
term. According to Yuasa and Ito (1990), fi �i�0; 1; 2; 3�
is given as

Fig. 3. Connection of oscillators in our central pattern generator
(CPG) model (LF: left forelimb, RF: right forelimb, LH: left hindlimb,
RH: right hindlimb)

Fig. 4. Stance phase and swing phase. In this case, only the LF �h0� is
in the swing phase, and the others (LH, RF, RH) are in the stance
phase
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f0 � sh�h1 � h3 ÿ 2h0 ÿ D0 ÿ D1� �4�
f1 � sh�h0 � h2 ÿ 2h1 � D0 ÿ D2� �5�
f2 � sh�h1 ÿ h2 � D2� �6�
f3 � sh�h0 ÿ h3 � D1� �7�
where sh is a constant parameter which determines the
magnitude of oscillator interaction, and D0;D1;D2 are
the desired values of the relative phases /0 � h0 ÿ h1,
/1 � h0 ÿ h3, /2 � h1 ÿ h2, respectively.1Appendix A
shows their potential function and minimum point. It
should be noted that if the relative phases equal the
desired values, then the interactions will be zero, i.e.,
they never work.

2.1.3 Treadmill dynamics For the case of a decerebrate
cat walking on the treadmill, the rotation velocity of the
treadmill corresponds to its environment. We describe it
as

qi � li �i � 0; 1; 2; 3� �8�

where li �i � 0; 1; 2; 3� is the parameter describing the
environment.

2.2 Simulations without adaptation

2.2.1 Normal locomotion When all the treadmill belts are
driven at the same slow speed, then

l0 � l1 � l2 � l3 � x �9�
and the decerebrate cat walks with the normal loco-
motion pattern `walk' shown in Fig. 2a. This indicates
that this pattern has been memorized in CPG as the
one suitable for its environment. In our model, if we
choose

x0 � x1 � x2 � x3 � x �10�
and

D0 � p; D1 � 3
2 p; D2 � ÿ 1

2 p �11�
then we can realize the same locomotion pattern as in
Fig. 2a.

We select the duty factor from Fig. 2a �b � 2=3�.
Thus, using (1), we get c � ÿ0:5. Figure 5 shows the

Fig. 5. Normal locomotion

Fig. 6. The time series of relative phases /0;/1;/2 and their desired
values D0;D1;D2 in normal locomotion

Fig. 7. Oscillator interactions during normal locomotion: No interac-
tion occurs

Fig. 8. Perturbed locomotion without adaptation

Fig. 9. The time series of relative phases /0;/1;/2 and their desired
value D0;D1;D2 in perturbed locomotion without adaptation

Fig. 10. Oscillator interactions in perturbed locomotion. Interactions
occur, so locomotion should converge to the memorized pattern

1 Strictly speaking, they are the desired relative phase when the
natural frequencies of oscillators are equal, x0 � x1 � x2 � x3.
See Appendix A for details.
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simulation result of the gait diagram when the treadmills
are driven at the same speed. Figure 6 shows the time
series of the relative phases /0;/1;/2 and their desired
values D0;D1;D2. In normal locomotion, the relative
phases exactly coincide with their desired values. In this
state, the desired pattern has been generated, and thus
the oscillator interactions are equal to zero. This is
shown in Fig. 7, which is a plot of

Fi �
Z

T
fi dt �i � 0; 1; 2; 3� �12�

that is, an integration of the interaction fi during one
step cycle. The potential function with the above
minimum (10, 11) corresponds to the memorized
locomotion pattern (Fig. 2a) in the normal environment.

2.2.2 Perturbed locomotion When the treadmill belt of
the left forelimb (LF) is driven faster (1.7 times) than the
others, that is,

l0 � 1:7x; l1 � l2 � l3 � x �13�
and if we still use (10) and (11), then we obtain the
simulation result shown in Figs. 8±10. As shown in
Fig. 9, the relative phases are not equal to their desired
values because of the periodic perturbation. Then,
oscillator interactions, which can be approximately
estimated by the di�erence between relative phases and
their desired values, never reach zero. This is shown in
Fig. 10, where oscillator interactions always exist.

3 Adaptation mechanism in perturbed locomotion

3.1 Adaptation mechanism

In the simulation described in the previous section
(Fig. 8), although we can achieve a stable pattern in the
changed environment, we cannot regard this gait pattern
as a result of adaptation. In the biological experiments,
it was suggested that, ®rst, before the cat can walk stably
in the perturbed environment, training with many steps
is necessary; and second, after learning, the cat can
memorize the new gait pattern that is adapted to the new
perturbed environment. However, the mathematical
model described in the above section was not su�cient
to explain these two important aspects.

In order to explain our concept of the adaptation
mechanism, we use Fig. 11, where the oscillator inter-
actions correspond to the gradient of potential. Ac-

cordingly, at the minimum point, the oscillator
interaction does not work since the gradient of the po-
tential vanishes. Then, the desired motion pattern is
generated if it is set to the minimum point. It should be
noted that this ®gure is conceptual, and thus it is dif-
ferent from the potential function given by (26).

The oscillator interactions work in such a manner
that the relative phases converge to the attractor, i.e., the
minimum point of potential in Fig. 11. This ensures the
stability of the desired locomotion pattern. Here we
assume that there is a periodic perturbation. Then the
state of the relative phase will be shifted from the at-
tractor, i.e., the minimum point of potential. In this case,
the gradient force acts to lead the state back to the at-
tractor. However, since perturbation is periodic, it may
disturb the state before converging to a minimum point
of potential. As a result, a new state emerges, where
perturbation and gradient force, i.e., oscillator interac-
tions, are balanced (see Fig. 11b). This corresponds to
the gait pattern given in Fig. 8. If the new pattern is
generated as a result of the balance between the oscil-
lator interactions and periodic perturbation, then the
oscillator interactions will always be necessary. This
kind of pattern generation is not e�ective, even from the
point of view of energy loss. Therefore, we propose that
in the perturbed environment, the potential function (26)
should be adjusted so that, when performing adapted
movement, the interactions among all oscillators tend
toward zero. As shown in Fig. 11c, this is equivalent to
changing the minimum point of the potential function
with respect to the environmental changes.

In our model, we de®ne oscillator dynamics sepa-
rately in the swing phase and stance phase. Therefore,
the whole dynamics of the relative phase is not strictly
following the gradient system. However, we may con-
sider this situation as follows: Basically, the gradient
dynamics governs the relative phase dynamics, and the
forcing oscillation resulting from the stance phase dy-
namics is regarded as periodic disturbance applied to
this gradient dynamics. The relations of phases, i.e.,
relative phases, are disturbed in the stance phase, but the
desired relations of phases are regained in the swing
phase, where the gradient dynamics is dominant.

In summary, our adaptation mechanism is the ad-
justment of the parameter of oscillator dynamics, espe-
cially the minimum point of potential function, which
corresponds to the memorized motion pattern. The ad-
justed parameters in oscillator dynamics determine the
emerging motion pattern, whereas the adjustment pro-
cess corresponds to learning.

Fig. 11a±c. Mechanism of ad-
aptation in perturbed locomo-
tion. a Normal locomotion, b
perturbed locomotion without
adaptation, c perturbed loco-
motion with adaptation
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3.2 Dynamics of adaptation mechanism

We now study how to adjust the parameters of the
locomotion pattern: The angular velocity in the swing
phase xi �i � 0; 1; 2; 3� as well as the desired relative
phase Dj �j � 0; 1; 2�. A criterion for parameter adjust-
ment is to decrease the oscillator interactions. Then the
adaptation dynamics should be slower than that of
locomotion, because it is necessary ®rst to evaluate the
current pattern before adjusting the parameters. The
resultant adjustment rules are given as

x�n�1�i � x�n�i � sx

Z
T

fi dt�i � 0; 1; 2; 3� �14�

D�n�1�0 � D�n�0 � sD

Z
T
�f0 ÿ f1� dt �15�

D�n�1�1 � D�n�1 � sD

Z
T
�f0 ÿ f3� dt �16�

D�n�1�2 � D�n�2 � sD

Z
T
�f1 ÿ f2� dt �17�

where n denotes the number of step cycles, T is the
duration of one step cycle, fi �i � 0; 1; 2; 3� is the force
given by (4)±(7), and sx and sD are parameters that
in¯uence the convergence of xi and Dj, respectively.
This adaptation dynamics is applied in every step cycle.

Equation (14) controls the natural frequency of each
oscillator xi. We can show that Fi, the integrated value of
interaction fi for one cycle, decreases according to (14)
(see Appendix B). On the other hand, (15)±(17) balance
the magnitude of the oscillator interactions. Conse-
quently, these equations reduce the cost function VD,

VD �
Z

T

X3
i�0

1

2sh
f 2

i

� �
dt �18�

that is, the integration of the squared sum of interaction
fi. As a result, the minimization of Fi and VD reduces the
interaction fi. It should be noted that if the change of xi
is slow enough, then the dynamics of the relative phases
will still remain as the gradient system.

3.3 Simulations

We executed new simulations by applying the above
adaptive mechanism. In the simulation, we set time
constants as sh � 2:0, sx � 0:25, and sD � 0:02.

Figure 12 shows the simulated gait diagram, which is
very similar to the experimental result in Fig. 2c for the
decerebrate cat. Figure 13 shows the time series of rel-
ative phases. This graph implies that the oscillator in-

teractions decrease in comparison with the unadapted
locomotion in Fig. 9 since the relative phases oscillate
near their desired values. This oscillation necessarily
occurs even in the adapted locomotion, because the
relative phases are disturbed in the stance phase of left
forelimb, which is driven faster than the others. Figures
14 and 15 show the time evolutions of Fi (12) and VD
(18), respectively. Figures 16 and 17 show the adjust-
ment of angular velocity xi and the desired relative
phase Dj. These ®gures indicate that the parameters of
the locomotion pattern are changed, which led to de-
crement of oscillator interactions. In addition, Fig. 18
shows the durations of the swing phase, stance phase,
and step cycle in our simulation. These durations change
considerably with perturbation and adaptation. Similar
tendencies can also be found in the experimental result
for the decerebrate cat (Fig. 19).

3.4 Aftere�ect of adaptation

We now come to analyze the aftere�ect of adaptation. In
the biological experiment, it was shown that after theFig. 12. Adapted locomotion to perturbation

Fig. 13. The time series of relative phases, /0;/1;/2 and their desired
values D0;D1;D2 in adapted locomotion

Fig. 14. Oscillator interactions in adapted locomotion. Interactions
decrease with adaptation

Fig. 15. Evaluation function VD, which decreases with adaptation
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decerebrate cat adapted to the perturbed environment
and returned to walking under normal conditions where
all the treadmill belts were driven with the same speed,
the cat walked with the gait pattern shown in Fig. 20a.
Compared with the gait pattern of Fig. 2a, the bisupport
phase B1 in Fig. 20a was longer than B2. Therefore, the
memorized motion pattern was changed by the adapta-
tion. As shown in Fig. 2, the di�erence between the two
successive bisupport phases, which is due to the
perturbation, decreases upon adaptive learning. This

decrement is feasible through interlimb coordination in
which, in the swing phase, the left forelimb moves slower
while the right forelimb moves faster than before. Such
an aftere�ect can, however, be eliminated by readapta-
tion, if the decerebrate cat continues to walk on the
treadmill. Figure 20b shows the same result of `walk' as
in the initial experiment of Fig. 2a. On the other hand,
Fig. 21 shows the durations of the swing phase, stance
phase, and step cycle in this experiment. These results
imply that the `walk' gait is more suitable than any other
gait in the normal environment.

Our model provides a similar computer simulation
result to the above experiment. Figure 22 shows a gait
diagram and Fig. 23 the durations of each phase in the
simulation. These results indicate that the parameters of
locomotion patterns have been readjusted to return to
the initial values.

4 Basic framework of adaptation in rhythmic motions

4.1 Common features

We have described our concept of the adaptive mech-
anism in rhythmic movements. There are two types of
parameters that determine the rhythmic motion pattern:
Those representing the subsystem's natural characteris-
tics and those describing the relation among subsystems.
In the locomotion example, the former is
xi �i � 0; 1; 2; 3� and the latter is Dj �j � 1; 2; 3�. If these
parameters are adjusted, the attractor of motion dy-
namics will change, which, in our concept, corresponds
to adaptation. In order to clarify the essence of
adaptation, we summarize several common features in
the adaptation of rhythmic movement.

Fig. 16. Change of xi�i � 0; 1; 2; 3� due to adaptation

Fig. 17. Change of Dj�j � 0; 1; 2� due to adaptation

Fig. 18a, b. The durations of swing phase, stance phase, and step cycle
for left and right forelimbs (LF and RF) determined by simulation. a
Left forelimb (LF), b right forelimb (RF). The ®rst stage (20 steps) is
normal locomotion, the second stage (15 steps) is perturbed
locomotion without adaptation, and the last stage (20 steps) is
adapted locomotion

Fig. 19a, b.Durations of swing phase, stance phase, and step cycle for
left and right forelimbs (LF and RF) obtained experimentally from a
decerebrate cat. a Left forelimb (LF), b right forelimb (RF). The
stages are the same as in Fig. 18
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Memorization of rhythmic motion patterns. The fact
that the same rhythms can be generated reproducibly in
the same environment indicates that patterns are mem-
orized in some form. In the locomotion example, the
natural frequency of the oscillator and the desired rela-
tive phases among oscillators are stored in the memory.

Adjustment of rhythmic motion pattern in memory. It is
impossible to memorize all motion patterns in order to
adapt to any unknown environment. When working in a
new environment, the corresponding new pattern should
be acquired by adjusting the memorized pattern.

Environmental changes. CPG basically produces
rhythms in a feedforward manner, since it does not use
any sensory feedback or command from the upper ner-
vous system (Grillner 1975). If the environment is always
changing at random, such a feedforward rhythm gen-

eration will be impossible because the environment must
be identi®ed using sensory feedback. Therefore, in order
to adjust the CPG so that it generates the appropriate
rhythmic pattern with respect to the speci®c environ-
ment, the environment itself should not ¯uctuate faster
than the rate of adaptation.

Time scale of adaptation. Adaptation requires the
evaluation of current motion. Before pattern adjust-
ment, it is necessary to know how suitable the current
pattern is. Therefore, the dynamics of adaptation must
be slow compared with that of the rhythmic motion
dynamics.

Convergency of adaptation. If adaptation progresses
slowly, rhythmic motion must continue for a long time.
The repetition of rhythmic motion is important for the
convergence of adaptation.

Fig. 20a, b. Change of locomotion pattern experimentally, where
treadmill belt under LF was changed from 61 cm/s back to 36 cm/s. a
Gait just after change of treadmill speed, b adapted gait to changed
treadmill speed

Fig. 21a, b.Durations of swing phase, stance phase, and step cycle for
left and right forelimbs (LF and RF) in experiment, where treadmill
belt under LF was changed from 61 cm/s back to 36 cm/s. a Left
forelimb (LF), b right forelimb (RF). The stages are the same as in
Fig. 18

Fig. 22a, b. Change of locomotion pattern determined by simulation,
where the environment of LF, i.e., l0, was changed from 1:7x back to
x. a Gait without adaptation after change of treadmill speed, b
adapted gait to changed treadmill speed

Fig. 23a, b.Durations of swing phase, stance phase, and step cycle for
left and right forelimbs (LF and RF) determined by simulation, where
environment of LF, i.e., l0, was changed from 1:7x back to x. a Left
forelimb (LF), b right forelimb (RF). The stages are the same as in
Fig. 18
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4.2 A framework for adaptation in rhythmic motion

Based on the above consideration, we propose, as shown
in Fig. 24, a framework for an adaptation mechanism in
rhythmic movements. Here, x denotes the state of
rhythmic movement, y denotes the environment, k
a�ects the rhythmic pattern, and parameter l speci®es
the environment. In the above case of locomotion, for
example, the parameters are x � �h0; h1; h2; h3�,
y � �q0; q1; q2; q3�, k � �x0;x1;x2;x3;D0;D1;D2�, and
l � �l0; l1; l2; l3�, respectively.

Environmental dynamics. The dynamics of the envi-
ronment varies according to l. Thus, l must at least be
constant for convergence of adaptation. In the case of
locomotion, environmental dynamics is described by (8).

Rhythmic motion dynamics. The rhythmic motion
pattern is an attractor within the space of x. It is deter-
mined from k of the rhythmic motion pattern. In addi-
tion, it is also a�ected by y. Accordingly, the dynamics
of x contain not only x but also y and k. In the case of
locomotion, rhythmic motion dynamics are described by
(2)±(7).

Adaptation dynamics. The rhythmic motion is directly
in¯uenced by the environment. The fact that adaptation
achieves `better' motions implies the existence of some
evaluation function E�x� (VD and Fi in the case of loco-
motion) of the motion pattern. In order to improve the
evaluation, k must be adjusted. Then, the dynamics of k
must be su�ciently slower than that of x, so that it is
possible to adjust k according to the evaluation of the
motion pattern. In the case of locomotion, adaptation
dynamics is described by (14)±(17).

In this framework, adaptation can be de®ned as the
correspondence of k to l, i.e., ®nding adequate param-
eters of the rhythmic pattern relative to the given envi-
ronment. This process is in¯uenced by the rhythmic
motion dynamics.

5 Discussion

By analyzing the perturbed locomotion, we proposed a
mathematical model of oscillator coordination, in which
the potential function of the relative phase dynamics is

adjusted. This kind of adjustment minimizes the inter-
actions between subsystems (oscillators) and allows the
system (CPG) to memorize the new motion pattern with
respect to the corresponding environment. It is impor-
tant to note that the environmental perturbation con-
sidered in this paper is regular and periodic. If it is an
impulsive perturbation, the locomotion, because it is
stable, will return to the original pattern. If, on the other
hand, perturbations are irregular, the steady locomotion
pattern will never appear. In our adaptive mechanism, it
is necessary for the time scales of adaptation dynamics,
sx and sD, to be much larger than that of the rhythmic
motion dynamics sh.

Our model can also explain the aftere�ect of adap-
tation well (Sect. 3.4). It is understood that if we do not
adjust the potential function, the memorized gait pattern
will not change, i.e., remain `walk' (Fig. 2a), even if
periodic perturbation was applied. In this case, if we
return the cat to walking under the normal condition
again, that is, to drive all treadmills with the same speed,
the decerebrate cat will walk with the normal pattern
immediately as shown in Fig. 2a. However, the result
from the biological experiment tells us that the cat did
not immediately walk with the normal pattern of
Fig. 2a; it walked with the pattern of Fig. 20a. This fact
indicates that the memorized pattern has been changed.

For locomotion pattern generation, Kimura et al.
(1993, 1994) simulated the change in the walking pattern
of insects against locomotion speed, load e�ect, and
limb amputation. They designed the oscillator coordi-
nation such that the load of each limb was distributed
evenly. Their coordination dynamics was also slower in
comparison with oscillator dynamics. This approach can
be summarized within our framework. Taga (1995a, b),
on the other hand, considered human locomotion as an
entrainment between the neural system and the mu-
sculoskeletal system. He showed, in his simulation, that
locomotion changes with walking speed and load e�ect,
which he has called a real-time adaptability. This for-
mulation, however, did not include the concept of slow
dynamics of parameter adjustment according to envi-
ronmental changes. The emergence of the locomotion
pattern in his work is equivalent to the balance between
perturbation and interaction, as shown in Fig. 11b. Be-
cause no parameter has been adjusted, that is, no in-
formation about the changed environment has been
memorized, it is then di�cult for this approach to realize
the immediate adaptation to unknown environmental
changes.

The adaptation demonstrated in this paper, in which
a new gait pattern was acquired under the changed en-
vironment condition, is di�erent from the adaptation
observed as pattern transition with increasing locomo-
tion speed, e.g., walk to trot to gallop. This kind of
adaptation merely switches between gait patterns which
are already acquired. Thus, this adaptation can be
achieved in a short time. We have proposed the pattern
transition model of quadruped locomotion based on
energy consumption (Ito et al. 1996), where we used the
same CPG model as in this work. Since the two di�erent
kinds of adaptation can be described by the same CPGFig. 24. Basic framework for adaptation in rhythmic movements
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model, both adaptations could be possibly explained by
the similar principle. However, in both cases, it is as-
sumed that some locomotion patterns are memorized
beforehand, and therefore the question of how they are
initially acquired arises. Re¯ex stepping (Thelen and
Smith 1994) seen in infants enables us to infer that a
mechanism of rhythm generation may be inherent for
automatic movement, originally.

6 Conclusions

We studied the adaptation mechanism of rhythmic
movement to a variable environment. As rhythmic
movement, we mainly considered automatic movement,
i.e., rhythmic movements which are produced by the
rhythm generator with neuronal oscillators. However,
there is the possibility that, if the common features
described in Sect. 4.1 are satis®ed, our framework is
applicable to other kinds of movements. Thus, it is
necessary to discuss the criterion of parameter adjust-
ment.

In one of our future projects, we will take the actual
dynamics of limbs or the body into consideration. In the
present study, we implicitly assume that the phase of the
limb movement is equal to that of the oscillator. How-
ever, they are not always equal. Therefore, the problem
of how to deal with the di�erence in these two phases
arises. Furthermore, postural balance, because of body
dynamics, will be another problem, since the interlimb
coordination is acquired through postural balance. The
stability of the body would also have an important e�ect
on the determination of quadruped gait, e.g., walk, trot,
and gallop.

Appendix

A Dynamics of relative phases

Rewriting (3)±(7), we obtain

_h0 � x0 � sh�h1 � h3 ÿ 2h0 ÿ D0 ÿ D1� �19�
_h1 � x1 � sh�h0 � h2 ÿ 2h1 � D0 ÿ D2� �20�
_h2 � x2 � sh�h1 ÿ h2 � D2� �21�
_h3 � x3 � sh�h0 ÿ h3 � D1� �22�
Using these equations, we calculate the dynamics of the relative
phases /0 � h1 ÿ h0, /1 � h3 ÿ h0, /2 � h2 ÿ h1:

_/0 � x1 ÿ x0 � sh�ÿ/0 � /2 � D0 ÿ D2�
ÿ sh�/0 � /1 ÿ D0 ÿ D1� �23�

_/1 � x3 ÿ x0 � sh�ÿ/1 � D1� ÿ sh�/0 � /1 ÿ D0 ÿ D1� �24�
_/2 � x2 ÿ x1 � sh�ÿ/2 � D2� ÿ sh�ÿ/0 � /2 � D0 ÿ D2� �25�
It is obvious that they are the gradient dynamics whose potential
function is de®ned by the following function:

V � 1

2
sh /0 � /1 ÿ D0 ÿ D1 � x0

sh

� �2
"

� ÿ/0 � /2 � D0 ÿ D2 � x1

sh

� �2

� ÿ/2 � D2 � x2

sh

� �2

� ÿ/1 � D1 � x3

sh

� �2
#

�26�

In fact, (23)±(25) can be derived from _/0 � ÿ@V =@/0,
_/1 � ÿ@V =@/1, and _/2 � ÿ@V =@/2. Therefore, the minimum

points of potential function @V =@/0 � @V =@/1 � @V =@/2 � 0 can

be given as solutions of the equations _/0 � _/1 � _/2 � 0. After
some computation, we can obtain the solution,

/0

/1

/2

264
375 � D0

D1

D2

264
375� 1

4sh

4 ÿ2 2

ÿ2 3 ÿ1
2 ÿ1 3

264
375 x1 ÿ x0

x3 ÿ x0

x2 ÿ x1

264
375

�
D0

D1

D2

264
375� 1

4sh

ÿ2x0 � 2x1 � 2x2 ÿ 2x3

ÿx0 ÿ x1 ÿ x2 � 3x3

ÿx0 ÿ x1 � 3x2 ÿ x3

264
375 �27�

It should be noted that, if x0 � x1 � x2 � x3, which is the case for
normal locomotion in our simulation, the relative phases /0, /1, /2

converge to D0, D1, D2.

B Adjustment of angular velocity in the swing phase

The dynamics of the oscillator in the swing phase is given by

_hi � xi � fi �i � 0; 1; 2; 3� �28�
Integrating them during the swing phase, we obtain

hi�t� � xit � Fi �i � 0; 1; 2; 3� �29�
where

Fi �
Z

Tsw
fi dt �i � 0; 1; 2; 3� �30�

and Tsw is the duration of the swing phase. If Fi > 0 (or < 0), then hi
is accelerated (or decelerated). In order to reduce the interaction Fi,
we adjust xi in proportion to Fi,

x�n�1�i � x�n�i � sxFi �i � 0; 1; 2; 3� �31�
If Fi � 0, then we do not change xi because xi is neither small nor
large.

Since interactions do not work in a stance phase, we can change
(30) as follows:

Fi �
Z

T
fi dt �i � 0; 1; 2; 3� �32�

C Modi®cation of desired relative phase

When the cost function is given by (18), we can adjust the minimum
of the potential function Dj as

dDj

dt
� ÿsD0 @VD

@Dj
�j � 0; 1; 2� �33�

It can be expressed in the discrete form
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D�n�1� �D�n� � s
dD�n�j

dt

�D�n� ÿ sD
@VD

@Dj
�34�

Thus, (15±17) can be derived from (4±7).
For example, we derive (15). The evolution equation becomes

@VD

@D0
�
Z

T

@

@D0

X3
i�0

1

2sh
f 2

i

� �
dt

�
Z

T

X3
i�0

@

@D0

1

2sh
f 2

i

� �
dt

�
Z

T

X3
i�0

fi

sh

@fi

@D0

� �
dt �35�

where, from (4)±(7),

@f0
@D0
� ÿsh;

@f1
@D0
� sh;

@f2
@D0
� @f3
@D0
� 0 �36�

Substituting them in (35), we get

@VD

@D0
� ÿ

Z
T
�f0 ÿ f1� dt �37�

Thus, we obtained (15).
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