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Abstract. Visual information processing in biological sys-'

tems is thought to be performed in a distributed manner. A
great number of visual neurons interact with one another;
some are cooperative and some are competitive, but almost
all are local and parallel. Such distributed architecture has
become one of the most significant concepts in engineer-
ing. It has become very important to demonstrate the princi-
ple of acquiring structures or functions suitable to the envi-
ronment by means of local interactions among neighboring
components. This paper proposes an image associative mem-
ory constructed by the local connection of many elements.
Natural images originally have a high correlation between
neighboring pixels. Conventional methods, however, have
not utilized this property of images. Our associative mem-
ory arranges the components (elements) in a plane, where
connections are limited to neighbors, so that the spatial re-
lation of pixels, at least, should be conserved. This local
connection is the critical factor in the parallel processing
architecture, because the amount of information which each
component receives decreases dramatically with increases in
the total connecting structure. Our associative memory has
the dynamical property described by the reaction-diffusion
equation. The reaction term expresses competition among
the stored images, with the result that only one image is
retrieved. The diffusion term, on the other hand, can eval-
vate the similarity of each stored image to the input, the
comparison being executed at the pixel level. From an al-
gorithmic viewpoint, the diffusive process is feasible with
local operations.

1 Introduction

Vision is one of the most important senses by which bio-
logical systems recognize their énvironment. For example,
humans depend on visual processing for about 60% of their
sensory information. Visual perception comes from images
projected onto the retina which are continuous in time, in-
dicating that the visual system processes a large amount of
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spatio-temporal information in a short time. Such high-speed
perception requires not only the parallel action of visual pro-
cessing units but also their local connection, In fact, visual
information flows in the same direction between some pro-
cessing stages, implying that they never have a connection
with all the other stages. It seems highly likely, from the
viewpoint of computing speed, that most visual perception
is achieved not in a global and sequential manner but in a
local and parallel one — if the speed of visual perception
is contrasted with the delay in visual cells (Kanizsa 1979).
Accordingly, local parallel processing is the key method for
the fast treatment of abundant data.

Natural images have the property that the correlation be-
tween pixels becomes greater as the pixels get closer to each
other, and smaller as they become more distant. This corre-
lation is conserved by keeping topography in images, which
necessitates only local connections among pixels. In other
words, parallel processing reflecting spatial continuity by
limited connections with neighbors could improve the per-
formance of image recognition.

Various methods of parallel processing have been pro-
posed, such as associative memory (Kohonen 1977), neu-
ral networks (Arbib and Hanson 1987; Matsuoka 1989),
Neocognitron (Fukushima 1988) and synergetic computation
(Haken 1991). In Neocognitron with a multilayered neural
network, the range of local operation is extended by mak-
ing the receptive region large for the neurons in the higher
layer, and the cells which selectively respond to the specific
stimulus are self-organized in the highest layer. All the other
methods, however, treat images (two-dimensional data sets)
as vectors (one-dimensional data sets), with the result that
the spatial relations in the images partially disappear. In ad-
dition, operations on vectors, such as inner product, usually
need all the vector elements, indicating that each element is
required to connect with all other elements. When consider-
ing hardware, such a totally connective structure leads to an
explosive growth in the number of connecting lines between
components. On the other hand, some methods make good
use of the spatial relations in images. Marr (1982), for exam-
ple, has proposed a stereo vision which imposes spatial con-
tinuity as one of the main constraints for depth perception.
Standard regularization theory for early vision problems has
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also included many types of spatial differential operators,
which conserve some types of spatial smoothness (Poggio
et al. 1985).

This paper proposes a new model of associative memory.
Two main points should be noted. First, the associative mem-
ory consists of many elements, connections between which
are limited to nearest neighbors, so that the spatial relations
of the image can be reflected. Secondly, all the elements
have the same dynamical property, which depends on the
information of elements in a local area. In concrete terms,
we have described the dynamics by the reaction-diffusion
equation,

dar(€,1)/0t = —0V/0ay + D Aay, (1)
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The notation and detailed explanation will be found in
Sect.2.2. This reaction-diffusion equation can achieve im-
age association in a local parallel manner by good use of
image properties.

The next section first explains the methodological back-
ground which led us to develop this associative memory,
and then presents the proposed method: associative memory
with the reaction-diffusion equation. Section 3 shows the
simulation results and Sect. 4 discusses the advantages of
the method and future studies.

2 Image association
2.1 Basic ideas
2.1.1 Orthogonal projection.

Firstly, this section deals with what auto-associative mem-
ories are (Haken 1990). Associative memories store in ad-
vance a large amount of coupled data (z1, Y1)y -+ s (T Yn )
When a datum z; is given, associative memories should pro-
vide the other one of the pair, i.e., y;. In the case where the
paired data z; and y; are the same, it is called an auto-
associative memory. The given datum x; generally contains
some kinds of noise. Auto-associative memories select the
datum most similar to the input in the stored data and pro-
vide it in the complete (noiseless) form.

Orthogonal projection is one of the powerful methods
for achieving auto-associative memories. Many papers have
defined orthogonal projection in vector space. In this case,
it is necessary first to transform images into vectors. For
example, we can change images into vectors by picking up
pixel values from each image one by one and arranging
them in order. Here, we introduce some notation. q denotes
an input image and v; G =1,...,M; M is the number of
memorized images) denote memorized images. In addition,
IT defines the vector subspace spanned by all stored images
v; i=1,...,M). ,

Figure 1 shows the concept of orthogonal projection. It
firstly projects input image vector g into vector subspace I1
(the projected vector is denoted by @),

Fig. 1. Orthogonal projection in vector space. The input q is projected into
the vector subspace II spanned by the memorized images vy and va2. {
defines the projected vector

q=q+w ©)
and then decomposes § into the components of each mem-
orized image within I7,

M
g=y v @

Here, w denotes a residual vector, which corresponds to the
distance between input vector q and subspace II, implying,
from the property of orthogonal projection, that g is closer
to q than any other vector in subspace II. Therefore q re-
sembles the input image most in subspace II.

As mentioned in Sect. 1, neighboring pixels generally
indicate a high correlation. Such topographical information
(i.e., how pixels are connected, or the distance between two
pixels) should be preserved in an effective association pro-
cess. However, previous works using the concept of the or-
thogonal projection (Kohonen 1973; Fuchs and Haken 1988;
Matsuoka 1990) have processed images in the vector form
like this. In addition, vectorial operations, such as inner prod-
uct, require all the elements of the vectors simultaneously,
implying that the total connection of vector elements is in-
dispensable. A method is needed that reflects the topography
with local connection only.

2.1.2 Associative memory with the diffusion equation.

In order to utilize topography in images, we first express
images as functions of the spatial position (z,1), Le., gz, )
and v(z,y) G = 1,...,M). They respectively provide a
pixel value of the input and stored images at the coordinate
(z,v). Here, M denotes the number of images in store. This
expression reflects the spatial relation of pixels on the two
arguments z and y.

According to the orthogonal projection in the functional
space, we decompose the input image ¢(2, 1) as follows:

‘
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where w(z, ) is the residual function. For the sake of sim-
plicity, w(z, y) as well as g(«, ), vilw,y) G=1,..., M) are
all assumed to be C'. In the same way for vector space,
we define §(z, y) as follows:

< ¥
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d(z,y) is the closest to g(z,y) in function space II. [I]
denotes function subspace spanned by the stored images
vi(z,y) G = 1,...,M).] Thus, we consider §(z,y) as the
desired association result from g(z,y).



a; G=1,...,M) in (5) can be calculated by using the
adjoint functions v} (z,y) of each v;(z,y) (i=1,..., M),

w= [[ v ey ™
7]
where adjoint functions v} (z,y) (¢ = 1,..., M) satisfy
M
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Here, 2 denotes the whole image ([|£2]| < oo) and &;; is
Kronecker’s delta.

Equation (8) means that the adjoint function v} (z,y) ex-
ists within the function subspace II. Equation (9), on the
other hand, means that every adjoint function v;'(z,y) is or-
thogonal to each v;(z,y) (j # i) and normalized so that the
inner product with v;(z,y) becomes equal to 1. From the
characteristics of orthogonal projection, the following equa-
tion is obviously satisfied:

/ / vi (z, Y)w(z, y)dzdy =0 (10)
£2

The integral computation generally requires all the val-
ues of integrand in the integral domain, implying that a to-
tally connecting structure is necessary in an ordinary method.

Here, we have considered the integral computation in (7) by

parallel processing with local restricted connection (Yuasa
et al. 1992). Then, diffusion plays a crucial role.

We explain here that the diffusion equation with the peri-
odic boundary condition averages the values in the diffusive
region while keeping the total value the same. For simplic-
ity, we consider the one-dimensional case. The diffusion is
described by a partial differential equation of a parabolic
type, sometimes used to express heat conduction. Thus we
use the example of heat diffusion in our explanation. First,
the function expressing the initial heat distribution is given
in the diffusive region £2. As is well known, the diffusive
process transports heat from an area of high temperature to
low temperature in a spatially continuous manner. Then, if
we impose a boundary condition such that the inflow and
outflow of heat are equal, the total amount of heat never
changes, with the result that the heat distribution becomes
averaged while conserving the total amount of heat (Fig. 2).
Because the periodic boundary condition is one such condi-
tion (Fig. 3a), every part of the diffusive region will contain
the same amount of heat. In the case of (7), the diffusive
region corresponds to the plane. Then the periodic boundary
condition is equivalent to considering the diffusive region as
a two-dimensional torus (Fig. 3b).

Boundary conditions are worth discussing further. The

above explanation states: the function f(z,y;t) is defined"

whose initial value is given by

f@,y:0) = v (2, y)q(z, y) an

Then, the integral computation

5= [[ ety (12)
2

is executable by using the diffusion equation
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Fig. 2. Averaging by diffusion. Initially, the heat is distributed unevenly.
After heat conduction by diffusion, however, the distiibution becomes even.
If the inflow is equal to the outfiow, the total amount of heat is kept constant
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Tig. 3a,b. Periodic boundary condition. a One-dimensional case. The pe-
riodic boundary condition makes an integral domain circle, where the two
vertices A and B are regarded as the same if the integral domain is given
as the segment A B. b Two-dimensional case. The integral domain becomes
a two-dimensional forus

d ' .
af(w,y;thDVZf(w,y;t) (13)
Here, D denotes the diffusion coefficient and

V2 = 8 /0x” + 0% | 0y* (14)

When using (12),

as 4 [[ . '
2 -5 [ 1@y

=// DV f(z,y, t)dzdy (15)
7

Gauss’s divergence theorem turns this into

45 _p / V #(s,1) - n(s)ds (16)
dt o0

where 852 denotes the boundary of {2 and n(s) denotes the
normal vector of the boundary. In order to keep the area 5,
i.e., dS/dt = 0, the following equation should be satisfied at
any time:

Vf(s,t) -n(s)ds =0 a7

a9
We use the periodic boundary condition as one of the condi-
tions satisfying (17). The boundary condition of a free end
can also be considered as such a condition. From the point
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Set of Elemen‘ts at the Same position in each plane
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Fig. 4. Planes and the same coordination set of elements, The plane consists
of the active elements, all of which are in the same order as the pixels in
the stored image. The same coordination set includes the elements all of
which are located at the same position [in the figure, (2, )] in each plane
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{
4
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Fig. 5. Mapping pixels to active elements. This mapping is one-to-one and
continuous. Here, only one stored image is drawn

of view of reflecting spatial continuity, we should impose
the latter, because the periodic boundary condition does not
reflect the spatial relation in the boundary. However, the
essence of integral computation with the diffusion process
does not change according to which boundary conditions are
used. Therefore, we adopt the periodic boundary condition
for simplicity. In addition, the periodic boundary condition
has the advantage that it makes convergence of dynamics
fast.
Finally, we define the output image as follows:

M
gz, y;t) = Zizlai(x,y;t)vi(a:,y) (18)

Equation (18) means that the output is the most similar image
to the input in the function subspace II and the residual
function w(z,y) has been removed from the input. It also
implies that noise within subspace II is not removable.

Tt should be noted that the diffusive process only needs
information in the local area, indicating that nearest-neighbor
connections are sufficient for the diffusive process. The dif-
fusive process transfers local information throughout the dif-
fusive region by interaction restricted to neighbors.

2.2 Associative memory with the reaction-diffusion equation
2.2.1 Recognition strategy

In the above method, however, we still have two problems.
Firstly, (7) includes adjoint functions, which cannot be cal-
culated by local operations alone. Secondly, the output never
becomes exactly the same as one of the stored images [i.e.,

Set of Elemen{s at the Same Position

: Averaging”

Competition Plane of Active Elements
/g Averaging/
Competition

-
2 Averaging

Fig. 6. Interaction. This is cooperative (averaging) within each plane but
competitive between planes, i.e., within a set of elements at the same po-
sition in each plane
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Fig. 7. Stable state. In this state, only one plane has elements that are active
(activity 1) while all other planes have elements that are silent (activity 0)

v;(z, )], but becomes §(z,y) in (6). This is because the
orthogonal projection also computes components other than
the main one. We have solved the first problem by changing
the way the initial values are set, and the second one by
introducing a reaction term representing competition among
images. T

We will first explain the hardware architecture (Fig.4).
Associative memory possesses a number of planes consisting
of active elements (such as neurons). Each of these elements
has a one-dimensional state, here called activity. The number
of planes is the same as the number of images in store,
and the number of elements is the same as the number of
pixels in one image. The active elements in the planes are
arranged such that the topographical relation of the pixels
is conserved, indicating that there is one-to-one continuous
mapping between pixels and elements (Fig.5).

There are two types of connections which are distin-
guishable both structurally and functionally. One is cooper-
ative within the planes and the other is competitive between
the planes. The former connections link the nearest neigh-
bors in the plane, with the result that each element connects

“with four others. The latter connections link all the elements

at the same coordinate in every plane (Fig. 6).

The interaction varies according to the type of connec-
tion. At connections within the plane, the interaction works
so that the activity of elements takes an equal value in each
plane. At the connections between planes, on the other hand,
the interaction acts as winner-takes-all, implying that, in a
set of elements at the same position in each plane, only one
is active while the others are silent.

By adjusting the strength of the two interactions, the
following stable state is established: one plane has elements



133

Inital Activity 1

Difference
in Pixel Value

-20 ~-10 10 20

Fig. 8. The function thatinitializes the activity of the element. The equation
for this is y = ¢/(z® + ¢), where o =4 and ¢ =400

50 steps .

Picture 3 Picture 4
' 100 steps

Picture 5

500 steps

08

Fig. 9. Five stored images. They are all 100 x 100 pixels and the gray value
ranges from 0 to 255

all of which are active, while the other planes have elements
all of which are silent (Fig.7). The activated plane should
then correspond to the image most similar to the input.

Here, we should explain some notation. ax(§,t) denotes P :
the activity of the element at the coordinate £ = (z, y) in the 1143 steps 1396 steps
kth image at time ¢. The activity varies from 0 to 1: activity b
1 means active while activity O means silent. vx(£), on the
other hand, denotes the pixel value at the coordinate £ in Fig. 10a—c. Simulation results for the input with high-frequency noise. a
the kth image which never evolves in time. It is assumed Input image. b Output with the diffusion equation. From the zop: 50, 100,

' . . ! . . " 500, 1143 steps. ¢ Output with the reaction-diffusion equation, From the
that the number of image in storage is M, implying that & op: 50, 100, 500, 1396 steps
ranges from 1 to M. And p(§) denotes the pixel value at
position £ in the input image.

c
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2.2.2 Initialization.

The plane corresponding to the image most similar to the

-input should have elements of greater activity in the initial

state. As such an initialization, we use the following equation
(Fig. 8):

ak(€,0) = f((€), v&(§))
= ¢/ [{p(&) — ve(®)}" +¢] (19)

Equation (19) describes the comparison at the pixel level. If
two pixel values are equal, the initial activity is set to 1. The
greater the difference in pixel values, the smaller the initial
value that is set.

It should be noted that this is not the only possible ini-
tialization and many other methods exist — Gaussian error
function, for example. It would be worth exploring which
initialization is the best.

2.2.3 Dynamics

We have described the dynamics of activity as follows:

daw(€, 1)/t = —8V/Bay, + DV2ay, (20)
Here
| M ‘ MM (M 2
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ar = ai(€, 1), and D is a diffusion coefficient expressing the
trade-off between two types of interaction. In addition, we
have to impose a boundary condition on (20) such that in-
flow and outflow become equal. Here we select the periodic
boundary condition (see Sect.2.1.2).

Equation (20) takes the form of the reaction-diffusion
equation: the first term denotes the reaction term acting in
a set of elements at the same position, i.e., between planes,
while the second term denotes the diffusion term working
within each plane.

For the reaction term we have used the gradient system
of the potential function (21) introduced by Haken (1988).
He has proved that this potential works as winner-takes-all,
with the result that only one element becomes active (activity
1) in a set of elements from the same position at stable state.
On the other hand, we have also adopted the diffusion term
which averages the values in the diffusive region, as shown
in Sect.2.2.

As shown in Fig. 7, we design the stable state as follows:
only one plane has elements that are active (activity 1) while
the other planes have elements that are silent (activity 0). A
sufficiently large diffusion coefficient D can achieve this
stable state. In this case, the diffusive process first makes
the activity equal in all planes. Then the competition intro-
duced by the reaction term becomes dominant. As a result,
the plane with the largest total activity suppresses the other
planes, implying that the dynamics converges to the desired
stable state.

The evolution equation (20) also becomes a gradient sys-
tem in function space
dar(€) 8V

o ban® @3

the potential functional of which is given by V:

- D A (0ax(©)’
V=/{V(§)+—2—Z< 9 > d¢ (24)

k=1
(Mikhaikov 1990). Equation (24) can be regarded as one
type of standard regularization expanded to function space
(Poggio et al. 1985). Actually, we can consider the reaction-
diffusion equation as one type of standard regularization.
The dynamics of (20) lead to the stable state as in Fig.7.
Therefore, we can construct the output image as follows:

M
vp(&)ar(€,t)
p(€,t) = Z’“=‘M'” 25)

Zk:] G (ga t)

where each activity plays the role of a weight in the sum-
mation.

3 Simulations

This section shows the simulation results using two methods:
the diffusion equation only (13) or the reaction-diffusion
equation (20). Five images (100x 100 pixels with gray values
ranging from 0 to 255) are stored in advance (Fig. 9). Three
kinds of image are offered, and the time evaluation of output
images is shown. For both methods, the diffusion coefficient
D is set to 200.

3.1 Recalling from an image with high-frequer@ noise

Image 1 containing high-frequency noise is used as the in-
put image. As shown in Fig. 10a, uniformly random noise
(maximum amplitude 40 and average 0) is added to all pix-
els. Figure 10b and c show that the output image becomes
the same as image 1, indicating that the high-frequency noise
is removable in both methods. :

3.2 Recalling from two mixed images

This simulation examines whether the noise existing in the
subspace spanned by the stored images (II in Fig.1) is re-
movable or not. Thus the input image is made by mixing
images 2 and 5 at a ratio of 1: 1 (Fig. 11a). In the case of
diffusion only, the output becomes, as we expect, the same
as the input image. This is because the diffusion equation is
derived from the orthogonal projection. The result with the
reaction-diffusion equation, on the other hand, converges to
one of the memorized images, i.e., image 2 (Fig. 11c), im-
plying that associative memory with the reaction-diffusion
equation can get rid of the noise in the subspace spanned
by the stored images. Since the proportions in the mixture
were the same for each image, the output converged to one
of them with the same probability. If the proportions are dif-
ferent (for example, the ratio 6 : 4), the image contributing
the greater proportion will be retrieved.
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b c

Fig. 11a-c. Simulation result for the input in which two images are mixed.
a Input image. b Output with (he diffusion equation. From the top: 50; 100,
500, 1206 steps. ¢ Output with the reaction-diffusion equation. From the
top: 50, 100, 500, 2481 steps
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1226 steps 1317 steps

b c

Fig. 12a—c. Simulation result for part of an image. a Input image. b Output
with the diffusion equation. From the rop: 50, 100, 500, 1226 steps. ¢ Output
with the reaction-diffusion equation. From the top: 50, 100, 500, 1317 steps
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3.3 Recalling from a part of the image

This simulation examines the ability of association by in-
putting a part of image 2 (Fig. 12a). The output image for
the diffusion equation contains components other than im-
age 2 (Fig. 12b) while the output for the reaction-diffusion
system converged exactly to image 2 (Fig. 12c).

4 Conclusion

This paper has proposed an associative memory based on
local parallel processing. This has three advantages: Firstly,
parallel processing makes performance time short. Secondly,
the local connecting architecture greatly reduces the number
of connections. Lastly, the type of connection conserves the
topography of pixels in images, which reflects the original
property of natural images that neighboring pixels have a
higher correlation than distant pixels.

Schmutz and Banzhaf (1992) have proposed the ‘diffu-
sive Haken model which combines the original Haken model
with a diffusive process. Our idea is the same as theirs, 1e.,
diffusion transfers local information throughout the whole
system. The role of Haken’s potential function, however, is
essentially different. The diffusive Haken model defines the
diffusive process in the same space where Haken’s potential
function works for the purpose of the robustness, which is
achieved by sharing the information for the winner with its
neighbors by diffusion. In our associative memory, on the
other hand, the workspace of the two types of interaction is
structurally separated. Our model explicitly uses the winner-
take-all function of the Haken model to select the image that
is recalled.

This associative memory can be regarded as a dynamical
system, the dynamics of which are described by the reaction-
diffusion equation. The diffusion term acts to evaluate the
overall similarity of each stored image to the input image.
The similarity is computed at the each pixel, but diffusion
averages it in each plane of active elements. The reaction
term, on the other hands, works as a competition among
stored images, with the result that the associative memory
retrieves only the image that wins the competition. Due to
the reaction term, the retrieved image contains no compo-
nents of other stored images.

As for complete image retrieval, the energy function has
been commonly used (Hopfield 1982; Haken 1988). Each
minimum of the energy function corresponds to a stored im-
age. Thus over time the state settles into one of the minima,
implying that the image has become exactly the same as one
of images in store. Although our associative memory utilizes
this concept, it differs from traditional methods in the num-
ber of energy functions: the energy function is assigned to
each of the element sets consisting of elements at the same
position in every image, where the time evolution is exe-
cuted in parallel. From an engineering point of view, such
a distributed architecture is expected to possess flexibility,
adaptability, and fault-tolerance (Ito 1995).

Another property of this associative memory is that the
structure can make the most use of the topography which
includes the spatial relations in images. The importance of
topography has been asserted in the Self-Organizing Map

(Kohonen 1989), neural gas model (Martinetz and Schulten
1991) and growing cell structure (Fritzke 1994), but these
differ from our approach in the following way: all these
models have focused on how a self-organizing system ac-
quires a topology-preserving structure, while our approach
is mainly concerned with how we can take advantage of
the topographical relation for image processing. It should

‘be very efficient for image processing, because images are

formed from pixel connections and thus the order of pixels
provides enough information for what is drawn in images.

Finally, we consider future works. Our system is weak
in recognizing transformed images, i.e., translated, rotated
or scaled images. This is because the activity of elements is
initialized by comparing the pixel values at the same coordi-
nate in the input and each stored image, and transformations
break this one-to-one continuous mapping between pixels
and elements. For transformed image retrieval, the invariant
to transformations should be extracted. One method has been
proposed (Fuchs and Haken 1988) in which a combination
of both Fourier transform and transformation to a polar co-
ordinate can detect the invariant with respect to translation,
rotation, and scaling.
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