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Abstract

Adaptive behavior of animals can be observed in the
locomotion, as the variations of gait patterns. Phys-
iological experiments demonstrated that decerebrate
cats can adapt to periodic perturbation applied by
the treadmill, and change their gait pattern with re-
spect to the environmental changes. Based on this
fact, we regard the adaptation as the process that ad-
justs memorized motion patterns to be more appropri-
ate for the changed environments. Following this idea,
we describe the adaptive behavior of decerebrate cat
locomotion using a central pattern generator (CPG)
model. We also take into account of the coupling of
oscillators and limbs dynamics, and propose an adap-
tive control approach for the limb movements.

1. Introduction

Adaptation is one of the most interesting abilities in an-
imal behavior. It was difficult to realize it by machines
artificially. Usually, machines were designed to move un-
der the specific conditions in the restricted environments.
If these conditions vary, machines can not always act in
the desired manner. Conversely, animals can adapt to
the variations of environments or task requirements, and
achieve their intended tasks successfully. An example-of
such adaptive behaviors can be found in animal locomo-
tion. For example, if a animal lost the function of one
leg, it can acquire a new walking pattern under this con-
‘straint and finally become to walk automatically with
the new pattern. However, in the case of conventional
walking machines, the locomotion might be impossible
unless we teach the new method to walk.

Throughout this paper, we consider the adaptation
in animal locomotion from the viewpoint of the gait
variations, i.e., the changes of the rhythms for the leg
movements. These types of the rhythms are reproducible.

Thus, it is considered that locomotion rhythms are mem-
orized as programs in the rhythm generators, i.e., central
pattern generators (CPG) (Grillner, 1975; Delcomyn,
1980), and the CPG generate the rhythms in a feed-
forward manner. In our opinion, the adaptation in lo-
comotion is equal to the change of memorized rhythm
patterns with respect to the environmental variations.
The experimental paradigm for adaptive locomo-
tion satisfying the above conditions has been proposed
(Yanagihara and Kondo, 1996). According to their re-
ports, cats were gradually acquiring a new gait pattern
with repeating the locomotion on the treadmill, although
the cats could not walk with the steady gait patterns ini-
tially (see Sect. 2). In this paper, we aim at realizing the
above adaptive behavior of decerebrate cats by machine.

2. Adaptive locomotion of cats

Concerning the adaptive locomotion of quadrupedal an-
imals, the following experimental results were reported
by Yanagihara et al. (Yanagihara and Kondo, 1996) who
elucidated that a neural transmitter nitric oxide (NO)
plays an essential role in learning mechanism of cerebel-
lum. They designed such a special treadmill as shown
in Fig. 1. This treadmill consists of three moving belts,
each of which can be driven independently at the differ-
ent speed. The left forelimb (LF) and left hindlimb (LH)
of the cat are separately placed on the different belts,
whereas the right forelimb (RF') and right hindlimb (RH)
are placed together on the other belt. If the speed of each
treadmill are different, the movement of the limb is peri-
odically disturbed whenever the cat places the limbs on
the treadmill belt.

Firstly, they drove all treadmill belts normally with
the same low speed (normal condition), and trained de-
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Figure 1 Experiment with a decerebrate cat.
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(a) Gait pattern in normal condition.
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(b) Adapted gait pattern in perturbed condition.

Figure 2 Gait diagrams of cat locomotion. Thick lines denote
support phase, and only one step cycle is expressed. The gait
pattern changes according to adaptation.

cerebrate cats! to walk on such a treadmill. Then, de-
cerebrate cats can walk on this treadmill with the same
gait pattern ‘walk’ (Fig. 2(a)) as the intact cats’.

Next, they changed the speed of one treadmill belt, on
which the cat places its left forelimb, 1.7 times faster than
the others (perturbed condition), and observed the cat’s
behavior through three trials. Each trial includes 60 to
100 steps A few minutes of intervals were taken between
each trial. At the first trial, any steady gait patterns
can not be observed. However, at the second trial, the
decerebrate cat obtained a new gait pattern (Fig. 2(b))
after some steps. At the last trial, the cat showed the new
pattern acquired at the second trial from the beginning
of the locomotion experiment.

1 The decerebrate cat is a cat whose high nerve systems such
as cerebral cortex are surgically cat at the midbrain. The
locomotion of decerebrate animals means that the high
nerve systems do not influence the control and the rhythm
generation in locomotion.

3. Mathematical modeling of adaptive
locomotion

3.1 Adaptation mechanism

We interpret the experimental results by Yanagihara et
al. as follows: Firstly, the cat had memorized the walk
gait for the normal condition. When the speed of the
treadmill belt changed, the walk gait had become less
appropriate to the changed environment. Accordingly,
the cat adjusted the memorized gait pattern ‘walk’ into
a new one by repeating locomotion. The fact that a new
gait pattern appeared at the beginning of the third trial
in the perturbed condition implies that the cat had mem-
orized this new locomotion pattern.

In order to explain our concept of adaptation mech-
anism schematically, we use the potential function in
Fig. 3 for a while (see also (Ito et al., 1997)). Although
each limb movement is dynamic and periodic, the rela-
tive phases of four limb movement will be constant if the
gait pattern is stationary. Therefore, the gait pattern can
be treated as fixed point, i.e., the minimum point of the
potential in a relative phase space. Note that gradient ex-
presses the forces which effect to realize the memorized
motion pattern. Accordingly, at the minimum point, any
forces do not work since the gradient of the potential
vanishes.

In the case of decerebrate cats, the walk gait ini-
tially becomes the minimum point (Fig. 3(a)). From the
characteristic of potential function, the memorized mo-
tion pattern is stable, in other words, corresponds to an
attractor. Even though locomotion is perturbed in an
impulsive-like manner, it will soon regain its original gait
pattern.

However, if the perturbation becomes periodic, the
next perturbation will disturb the motion pattern again
before the motion pattern is completely regained. Conse-
quently, the perturbation and gradient force of potential
will balance each other, as shown in Fig. 3(b). As men-
tioned above, the gradient force is force which realizes
the memorized motion pattern. In Fig. 3(b), the mem-
orized motion pattern is not realized even though this
force is always working, which means that the memo-
rized motion pattern is not appropriate to the changed
environment.

Therefore, the memorized pattern, i.e., an attractor
in motion pattern should be adjusted so that the gradient
force can achieve it. This is equivalent to adjusting the
minimum point of the potential in order to decrease the
gradient force, as shown in Fig. 3(c). We consider this
adjustment process as ‘adaptation’.

3.2 Rhythm generator dynamics

Figure 4 shows a model of CPG. It is composed from
four coupled oscillators. We assume that the oscillator
phase 6; (i = 0,1,2,3) directly represents the phase of
the periodic limb movement. The coupling in Fig. 4 may
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Figure 3 Adaptation mechanism in perturbed locomotion.

not always coincide with the actual oscillator connections
in animals. This is only for mathematical convenience. A
different coupling may also generate the same rhythm
pattern mathematically. -
Each limb moves in either swing phase or support
phase. The character of limbs movements is essentially
different in each phase. Before defining a rhythm gener-
ator dynamics, we divide the phase space of-oscillators
into two regions and assign them to the swing phase and
the support phase, respectively. As shown in Fig. 5, we
set the support phase to the region cosf; > -, while the
swing phase to the region cosf; < <. Here, we determine

7 by :
(1)
where  is duty factor that denotes the proportion of the
support phase in one step cycle. From Fig. 2(a), we set
g =2/3.

In the support phase, limbs are always in contact with

the treadmill and cannot move freely. Thus, we describe
the dynamics of the supporting limbs as

~+ = coswp.

(:=0,1,2,3), (2)
where p; (i = 0,1,2,3) is a variable representing the
speed of the treadmill belt. Equation (2) means that the
limb movement is forced by the treadmill.

In the swing phase, limbs can move freely. Thus, it is
possible to adjust the phase of limb movement according
to interactions among oscillators.

éi"—'Pi

(i =0,1,2,3). 3)
Here w; (¢ = 0,1,2,3) denotes a natural angular velocity
of oscillator. As the limbs shows the same movements in
normal condition, we initially set them as follows:

b =uw; + f;

(4)

In addition, f; ({ = 0,1,2,3) denotes the interaction
term. According to Yuasa and Ito (Yuasa and Ito, 1990),

W = Wy =Wy = wg = W.

RF
@)

LF
(90) DO

LH @X@ RH
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Figure 4 Connection of oscillators in our CPG model (LF:
left forelimb, RF: right forelimb, LH: left hindlimb, RH: right
hindlimb). Dg, D;, D, are the desired values of each relative
phase.
RH
ke,

\\\\\\ >
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Figure 5 Swing phase and support phase. In this case, only
the LF {#) is in the swing phase and the others (LH, RF,
RH) are in the support phase.

we can control relative phases to any values with a poten-
tial function in relative phase space. Using this method,
fi (i =0,1,2,3) is given as follows:?

fo ='Te(01 + 03 — 20y — Dy — D4) (5)

(6)
(7

2 These oscillator interactions can be calculated with local
information, in other words, each oscillator should know
only the phase of coupled oscillators. Therefore, phases of
all the oscillators, i.e., global information are not necessary.

f1 = 19(60 + 03 — 261 + Do — Ds)
f2 = 19(01 — 02 + Dy)
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Figure 7 The structure of the limb. Each limb has 2 DOF:
hip joint (qs) and knee joint (gx). F; is a ground reacting
force.

f3 = 19(f0 — 85 + D1), ©)

Here, 7y is a constant parameter which determines the
magnitude of oscillator interaction, Dy, D; and D; are
desired value of relative phases. For example, if we want
to generate the walk gait in Fig. 2 (a), we should set

them as

3 1
Do=7T,D1=§7T,D2=—§7l'- (9)

We show the potential function in Appendix A.
3.8 Adaptation dynamics

The parameters which determine the minimum point
of the potential function are w; (: = 0,1,2,3) and D;
(j = 0,1,2). Adaptation dynamics change them to de-
crease the oscillator interactions. As the cost functions
we choose the integrated value of interaction f; for one
cycle,

F= /T fdt (i=0,1,2,3), (10)

and the integration of the squared sum of interaction f;

o= [Y{mste  ap

t=0

The resultant adjustment rules are given as

wsnﬂ) =w§")+rw/fidt (i=0,1,2,3), (12)
T

DM = p{™ 4+ 7p /T (fo — fr)dt, (13)
D§"+1) = Dgﬂ) + 1D /(fo - fﬂ)dta (14)
T
D\ = p{™ 4 7, /T(fl — f2)dt, (15)

where n denotes the number of step cycles, T is the dura-
tion of one step cycle, f; (i =0,1,2,3) is the force given
by eqs. (5)—(8), and 7, and 7p are parameters that influ-
ence the convergence of w; and Dj, respectively. We show
in Appendices B and C the derivation of this dynamics

‘from the cost functions. This dynamics should be slower

than that of locomotion.

4. Control of limb movements

4.1 Assumptions
We extend the mathematical expression in the previous
section to include the limb dynamics. Then, the coupling
of the oscillator and limb dynamics, or the design of the
interaction between two dynamics, becomes an impor-
tant problem. Figure 6 shows a sketch of our quadruped
model.

For the simplicity, we make the following assumptions
to focus on the coupling of the two dynamics.

~ The walking motion is restricted within the sagittal
plane.

— The balance of the body is not considered, i.e., the
body is supported at the fixed position on the tread-
mill.

— As shown in Fig. 7, each of four limbs has the same
structure with 2 degrees of freedom of the motion:
the hip joint (gn), and the knee joints (gz).

— The stance length for each limb is constant from —S§
and +S with no relation to the walking speed.

— The ground reacting force from the treadmill is de-
tectable. ‘

From the second assumption, we can treat the motion
equations of the limbs separately in each four limbs. Then
we can obtain four decoupled motion equations of two
link systems.

4.2 Control in support phase

In the support phase, the oscillator dynamics should fol-
low the limbs dynamics. It is because the limb move-
ments are under constraint of the treadmill movements
and are reflected to the oscillator phases. The limbs
have to generate the large force along the gravitational
direction, while following the movement of treadmill
along the horizontal direction. Accordingly, we apply the
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Figure 8 Simulation result of gait change by adaptation dy-
namics.
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Figure 9 Change of w; (i = 0,1, 2, 3) due to adaptation.
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Figure 10 Change of D; (j =0, 1,2) due to adaptation.

impedance control such that high-impedance in the grav-
itational direction.and low-impedance in the horizontal
direction. We can compute the joint torque 7; so that the
response to the ground reacting force F; becomes

MyX; + Dy(X; - Xai) + Ka(X: — Xau)=F; (16)
where X; = [z;,y;] is the position of the toe in the abso-
lute coordinate, Xy; is its desired position, My, Dy and
K4 are matrices denoting the desired inertia, viscosity
and elasticity. We design X, to follow the treadmill belt
as

(17)

Ti=wit, ¥ = HSP.

Here, @; is an estimated speed of treadmill, and H,,is:
desired height of the toe in the support phase. To contac
with the treadmill at any time, we set H,, < 0.

In the support phase we change the oscillator phast
according to the position of the toe. The toe moves along
the horizontal direction from +S to —S (Fig. 7), while
phase evolves from —78 to 8 (Fig. 5). If we assume
that the phase evolves at the constant rate when the toe
moves at the constant horizontal speed, we can compose
the following continuous mapping from the toe position
to the oscillator phase,

mf
0; = ——X;. 18
i (18)
The oscillator dynamics becomes
. 7|'ﬁ .
0; = ——§X,. (19)

This equation must replace eq. (2) if we consider the limb
dynamics.

4.3 Control in swing phase

In the swing phase, on the other hand, the oscillator
dynamics govern the limb movement dynamics. Followed
by the oscillator rhythms, the timing of limb movements,
i.e., the relative phases are adjusted.

At first, we calculate the desired trajectory of toe
from the oscillator phase ;. In the swing phase, phase
evolves from 78 to n(2 — #) (Fig. 5), while toe moves
along the horizontal direction from § to +S$ (Fig. 7).
Under the similar condition in the support phase, we
can generate the desired toe position as follows:

S
Ty = mw —7),Ydi = Hep.

(20)
Here, H;,, is a desired height of the toe in the swing
phase. Then, we determine the joint torques,

7= JT(:)[D(Xai — X) + K(Xa — X)) (21)

to follow this trajectory, where D and K are respectively
the velocity and position feedback gain. Note that, in
swing phase, there is no reaction force form the treadmill,
i.e., F, ;=0

5. Simulations

We executed the computer simulation including the
limbs dynamics. At 5.0(s) after the simulation started,
we switch the treadmill speed 1.7 times faster. We set
time constants as 79 = 2.0, 7, = 0.25 and 7p = 0.045.
Fig. 8 shows the simulated gait diagram, which is very
similar to the experimental result of the decerebrate cat
of Fig. 2. Figure 9 and Fig. 10 show the adjustment of
angular velocity w; and the desired relative phase D;.
These show that the minimum point of potential func-
tion, i.e., memorized gait pattern is gradually changing.
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Figure 11 A quadrupedal walking robot.

6. Conclusion

We have successfully simulated the gait change with the
treadmill speed. As the future works, we will experi-
mentally examine it with a quadrupedal walking robots
shown in Fig. 11. The experimental results of robot will
be presented at the conference.

Appendices

A Dynamics of relative phases

Using egs. (3) to (8), we can calculate the dynamics of
relative phases, ¢o = 01 — g, ¢1 = 03 — bg, p2 =05 — 0,
as:

do = wy —wp+ To(—do + ¢2 + Do — D3)

—7o(¢o + ¢1 — Do — D4), (22)

Q.Sl = w3—uJo+Te(—¢1+D1)“TG(¢0+¢1“DO—DI)a (23)

by = wy — w1 + T(—2 + Da) — To(—¢o + $2 + Do — Dz))-

(24
It is obvious that they are gradient dynamics with the
potential function given as follows:

1 Wi
V = Snol(¢o+¢1— Do — D1+ —)?
T8
w
+(—¢o+ ¢2 + Do — D2 + T—;)z
+(=¢s + Dy + 2)?
79

+(=t1+ Dr ) (25)

In fact, eq. (22) to (24) can be derived from do =
—3V/8¢o, 1 = —8V/0¢y and ¢y = —0V/0¢s.

B Adjustment of angular velocity in the
swing phase
The dynamics of the oscillator in the swing phase are

given by .
bi=uw; + f; (i=0’1a2>3)'

Iﬁtegrating them during the swing phase, we obtain

Ab; = 0;(tg) - o(t;) = wilsw + Fj,

= gt (28)

and Ty = ty — t; is the duration of the swing phase. If
F; > 0 (or < 0), then 6; is accelerated (or decelerated).
In order to reduce the interaction Fj, we adjust w; in
proportion to F; as

(26)

(27)

where

w§n+1) - wgn) +m.F  (6=0,1,2,3). (29)

If F; =0, then we do not change w;.
Since interactions do not work in a support phase, we
can change eq. (28) as follows:

Fi= / fidt  (i=0,1,2,3). (30)
T

C Modification of desired relative phase

When the cost function is given by eq. (11), we can adjust
the minimum of the potential function D; as

dD; Vv, ,
d—t” =—7p 6_1)% (G =0,1,2). (31)
It can be expressed in the discrete form as
()
D(n+1) — D(rl) + TdDJ

Vo
= D" —rp-—2 32
0D; (32)

Thus, egs. (13)-(15) can be derived from egs. (5) ~ (8).
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