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A b s t r a c t  Quadrupeds  can acquire  new gait pa t terns  with 
respect  to environmenta l  changes. Yanagihara  et al. have 
demons t ra ted  this adaptabi l i ty  by exper iments  on a decer-  
ebra te  cat. These  exper iments  indicate that  quadrupeds  
gradually adapt  to their  envi ronment  by repeat ing locomo- 
tion in a s teady environment ,  and that  the acquired gait 
pa t t e rn  is persis tent ly memor ized  after the locomotion.  Our  
research aims at formulat ing a mathemat ica l  model  of these 
cats '  behavior  and constructing a quadrupeda l  walking 
robot  to realize such adapt ive  behavior .  To date,  we have 
p roposed  a mathemat ica l  descr ipt ion of adapta t ion  at the 
level of gait pa t te rn  generat ion using neural  oscillators. In 
this paper ,  we extend it to take into account l imb dynamics. 
We study how to design the interact ion of the oscil lator and 
limb dynamics.  

Key words Quadrupeda l  locomot ion  �9 Gai t  pa t te rn  �9 A d a p -  
tat ion - Periodic  per turba t ion  �9 Coupled  oscillators �9 Limb 
dynamics 

Introduction 

A d a p t a t i o n  in quadrupeda l  locomot ion  can be observed in 
exper iments  on decerebra te  cats. As  a result  of adaptat ion,  
the gait pa t t e rn  changes to another  s teady one. Yanagihara  
et al. 1'2 have demons t ra ted  this adap ta t ion  process using a 
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specially designed t readmil l  (Fig. 1). Their  t readmil l  con- 
sists of three  moving belts. Each bel t  can be driven indepen-  
dent ly  with different  speeds. Firstly, they drove all the 
t readmil l  belts at the same low speed. Af t e r  some training, 
the decerebra te  cat natural ly showed the same "walking" 
gait as intact cats. Next, they changed the speed of  one 
t readmil l  bel t  (on which the cat p laced its left forel imb)  to 
1.7 t imes faster  than the others, and observed the cat 's  
behavior  in three trials. Each trial  includes 60-100 steps, 
and the interval  be tween each trial  was a few minutes.  In 
the first trial, the gait pa t te rn  of the cat did not converge to 
a s teady one, but  in the second trial,  it converged to a new 
gait pa t te rn  after  a few steps. In the  last trial, the cat showed 
the acquired new gait pa t te rn  f rom the beginning of  the 
locomot ion experiment .  

In order  to examine the stabili ty of the gait pat tern,  it is 
necessary to impulsively disturb the  locomotion.  However ,  
under  the environment  of nonregular  per turbat ion ,  a new 
gait pa t te rn  cannot  be acquired, and the gait pa t te rn  soon 
goes back to the original one owing to its stability. In the 
exper iments  by Yanagihara  et al., the cat 's  locomot ion  is 
pe r tu rbed  whenever  it places its left forel imb on the t read-  
mill belt.  This means  that  the locomot ion  is pe r tu rbed  peri-  
odically. It is under  such per iodic  pe r tu rba t ion  that  the new 
gait pa t te rn  was generated.  

In this paper ,  we formulate  a mathemat ica l  model  of the 
cats '  behavior  to construct  a quadrupeda l  walking robot .  
We  have previously p roposed  a mathemat ica l  descr ipt ion 
for the adapta t ion  using neural  osci l la tors)  Here,  we extend 
it to take  into account the l imb dynamics.  Then the coupling 
of oscil lator and limb dynamics becomes an impor tan t  
problem.  

Adaptation mechanism 

The exper imenta l  results in Yanagihara  et al. p rovide  us 
with several  ideas. Firstly, the cat had  memor ized  the walk- 
ing gait for a normal  environment .  W h e n  the speed of the 
t readmil l  belt  changed, this walking gait was not  suitable to 
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the changed environment. Accordingly, the cat adjusted the 
memorized gait pattern into a new one by repeated locomo- 
tion. The fact that the new gait pattern emerged at the 
beginning of the third trial of the experiment implies that 
the cat had memorized the new locomotion pattern. 

We formulate this adaptation process as follows (Fig 2). 
Firstly, when we think about the gait pattern, we focus on 
the relative phases of movement of the four limbs. Al- 
though each limb movement is dynamic and periodic, the 
relative phases will be constant if the gait pattern becomes 
steady. Then, we can regard the gait pattern as a fixed point 
in relative phase space. Using the potential function for 
simplicity, the steady gait pattern corresponds to the mini- 
mum point of the potential function in the relative phase 
space. 

Initially, the cat walked on the treadmill with a "walk- 
ing" gait. Accordingly, the cat memorized the walking gait 
for normal conditions (i.e., all the treadmill speeds the 
same). So we can first represent the walking gait as the 
minimum point of the potential function. From the charac- 
teristic of the potential function, the memorized motion 
pattern is stable; in other words, it is an attractor in relative 
phase space. Even though locomotion is perturbed impul- 
sively, its pattern will soon come back to the original one. 
However, if perturbation becomes periodic, the next per- 
turbation will disturb the motion pattern again before the 
original motion pattern completely returns. Consequently, 
the perturbation and gradient force of the potential will 
balance each other where the relative phase is different 
from the memorized one. 

Note that the gradient force is a force which tends to 
realize the memorized motion pattern. Even though such a 
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Fig. 1 Experiment with a decerebrate cat 

gradient force is always working, it fails to produce the 
memorized pattern. This means that the memorized motion 
pattern is not suitable to the environment. Therefore, the 
memorized pattern should be adjusted so that the gradient 
force can achieve it. In other words, the attractor in 
the motion pattern should be adjusted to decrease the 
gradient force. We consider this adjustment process to be 
"adaptation." 

Formulation of adaptive behavior 

Assumptions 

Our final goal is to realize the adaptive behavior of 
the decerebrate cat by a quadrupedal walking robot. In a 
previous paper, we formulated the adaptation mechanism 
with a mathematical expression, s In this study, we extend 
it to include the limb dynamics. Here, the coupling of 
the oscillator and the limb dynamics, i.e., how to design 
the interaction of two dynamics, becomes an important 
problem. Figure 3 is a sketch for the quadruped model 
examined in this study. We summarize our main assump- 
tions below. 

- T h e  walking motion is restricted within the sagittal 
plane. 
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Fig. 3 A model of adaptive behavior in cat locomotion 
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Fig. 2 Mechanism of adaptation in perturbed locomotion, a Normal locomotion; b perturbed locomotion without adaptation; e perturbed 
locomotion with adaptation 



- The balance of the body is not considered, i.e., the body 
is supported at a fixed position on the treadmill. 

- The four limbs have the same structure and perform 2 
D O F  of the motion: the rotation of the joint between the 
body and the limb (c~), and the contraction/extension of 
the limb (r~). 

- The step length is constant (c%~ --< c~ --<- c%j) for each 
limb with no relation to the walking speed. 
The ground reaction force from the treadmill is 
detectable. 

The CPG (central pattern generator) is a spinal neural oscil- 
lator responsible for the generation of the rhythm of 
locomotion. In our model, each limb motion is mainly 
controlled by the neural oscillator model assigned to the 
limb. 

We need to define both the control law for the limb 
and the oscillator dynamics separately in the swing phase 
and the support phase. This is because that the nature of 
the limb movement  is essentially different in these two 
phases. In addition, we must define the dynamics of the 
adaptation process to achieve an adaptive behavior. There- 
fore, three dynamics are important: the support phase 
dynamics, the swing phase dynamics, and the adaptation 
dynamics. 

Preparations 

We express the phase of the oscillator by the variable 0~(i = 
0, 1, 2, 3). The phase space becomes the one-dimensional 
torus space. We split the phase space into two regions: the 
region satisfying cos0i > cosrc[3 = y and the remainder, as 
shown in Fig. 4. The constant parameter  [3 controls the duty 
factor which denotes the ratio of the support phase in one 
locomotion step. 

The limb has a two-link structure attached to the body, 
as shown in Fig. 5. We express its dynamics as 

Ml(qi)Oi + H, (q i ,  qi) @ al (q i )  : ~i + JV(qi)Fi  (1) 

where i represent the number  of the limb (i = 0, 1, 2, 3), q~ 
= [c% r~] r is a joint angle (superscript T denotes the trans- 
pose), ~i is a joint torque, M~ is an inertia matrix, H/denotes  
the Coriolis and centrifugal force, Gt denotes the gravita- 
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tional force, Fi is a reaction force from the treadmill, and 
J is a Jacobian matrix. 

Support  phase dynamics 

In the support phase, the limbs support the body, and their 
movements  are constrained by the treadmill. The limb has 
to generate a large force in the gravitational direction while 
following the treadmill movement  in the horizontal direc- 
tion. Accordingly, we apply impedance control such that the 
mechanical impedance is high in the gravitational direction 
and low in the horizontal direction. We can compute  the 
joint torque ~ so that the response to the ground reaction 
force F~ becomes 

M d X i  -~- D d ( X i  - Xdi)  @ K d ( X i  -- Xdi)  : f i  (2) 

where X, is the position of  the toe in absolute coordinates, 
Xji is its desired position, and M~, D~, and Kj are matrices 
denoting the desired inertia, viscosity, and elasticity, 
respectively. 

In order for the CPG to generate the locomotion rhythm 
appropriately with respect to the environment, the position 
or moving velocity of the limb should be fed back to the CPG. 
Therefore,  we changed the oscillator phase in the support 
phase according to the limb movement.  We assumed that the 
step length of  the limb movement  is constant (c%, -< c~ -< 
c%j) as well as the range of the support phase in the oscillator 
phase space (0~s -< 0~ -< 0,p_t), as shown in Figs. 4 and 5. It 
provides the initial and final conditions for the relation 
between the phases of the oscillator and limb movement.  
Under  these conditions, we composed some continuous 
mapping from the limb position to the oscillator phase, 

o,  = (3 )  

such that, 

(4) 

Here, we focused on the joint angle ai between the body 
and the limb when considering the phase of the periodic 
limb movement  (Fig. 5). Using the above equation, we 
define the oscillator dynamics in the support phase as 

Swing pha , 

RH 
~ (.(03) 

1 ( o 1 )  
.,~Support phase 

Fig. 4 Stance phase and swing phase. In this case, only the LF (00) is in 
the swing phase and the others (LH, RF, RH) are in the stance phase 

sai [ I 

Fig. 5 The structure of the limb. Each limb has 2 DOF: rotation (%) 
and contraction/extension (rl). F i is a ground reaction force 
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o,- oe,,~,,~,,''~ (5) 
0% 

Swing phase dynamics 

In the swing phase, the limb is released from the constraint 
of the treadmill and can move freely. The timing of limb 
movement, in other words, the relative phases of limb 
movement,  can be modified in this swing phase. So, in the 
swing phase, CPG governs the dynamics of the limb move- 
ment. We can calculate the desired value of %, i.e., c&~ from 
the oscillator phase 0~ because, as is the case for the support 
phase, we already know the initial and final conditions for 
the relation between 0~ and a~. We control the limb move- 
ment so that it follows this desired value ad~. 

The CPG, on the other hand, must produce the oscilla- 
tion pattern, i.e., the phasic relation of the four oscillators, 
which should be memorized as the preferred gait pattern. 
Using the method proposed by Yuasa and Ito, 4 we can 
control the relative phases 00 = 0z - 0o, 01 = 02 - 0 1 ,  and 02 
= 03 - 00 to their desired values Do, D1, and D2 by the 
potential function defined in the relative phase space, 

Adaptation dynamics 

At the normal locomotion, CPG produces the walking gait 
using the potential function in Eq. 6 for the appropriate Dj 
(j = 0, 1, 2) and m~ (i = 0, 1, 2, 3). Then, from the character- 
istics of the potential function the oscillator interaction 
does not work because the walking gait is a minimum 
point of the potential function. However, if the treadmill 
speed increases, the perturbations push away the motion 
patterns from the minimum point, and a steady pattern 
emerges at different points from the minimum point. 
Consequently, oscillator interaction always works to realize 
the memorized pattern. 

Then, as mentioned in the previous section, we adjust the 
memorized motion pattern so that the oscillator interaction 
decreases. We prepare two type of evaluation function, 

Fi = I r f f l t  (13) 

and 

Vd = 2 dt (14) 

1 co 2 
V=}% % + ~ - D o - & +  % + - % + D 2 + - -  

t0 ) ~0 ) 

+ -0o + qb2 + Do - O2 + 0)1 (6) 

+ ( - 0 t + D l +  m3) 2] 

~o)J 

According to this potential function, the dynamics of the 
relative phase become the gradient system 

~j _ 3 V  
3~i ,  (j = 0, 1, 2) 

Further calculation provides 
dynamics: 

0 i = %  +./], ( i = 0 , 1 , 2 , 3 )  

the 

(7) 

following oscillator 

(8) 

Here, % (i = 0, 1, 2, 3) denotes the natural frequency of the 
neural oscillator, andfi (i = 0, 1, 2, 3) are oscillator interac- 
tions given as 

To decrease Eq. 13, we can derive the dynamics 

o)I ~.1) = ml ~) + ~:,olrfflt (i = 0, 1, 2, 3) (15) 

while for Eq. 14, we can obtain the following equations: 
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fo = to(o~ + 0~ - ZOo - 0 o  - l)1) (9)  

f l  = %(0o + 02 - 201 + Do - / 9 2 )  (10)  

f2 = %(01 - 02 + D2) (11) 

73 = t0(00 - 03 + D1) (12)  

Note that the memorized pattern is described not only by 
the desired relative phases Do, D1, and D2, but also by the 
natural frequency of the neural oscillator mi. 
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Fig. 6 The gait pattern results of the computer simulations, a Normal 
condition; b perturbed condition 



where n denotes  the number  of s tep cycles, T is the durat ion 
of one step cycle, and ~ and ~D are parameters  that  
influence the convergence of % and Dj, respectively. 

These  pa ramete r s  should be adjus ted  slowly, because we 
cannot  adjust them until we know their  evaluation. There-  
fore we define the adapta t ion  dynamics discretely at every 
locomot ion  cycle. In  addition, we set the t ime constants ~D 
and % smaller  than the oscil lator dynamics,  i.e., ~0. 

Simulation 

We executed the computer  s imulat ion according to the 
defined dynamics. Firstly, we confirmed that the CPG cer- 
tainly p roduced  the walking gait in a normal  environment .  
The gait pa t te rn  obta ined  in this s imulat ion is shown in Fig. 
6a. 

Next,  we increased the pa rame te r  corresponding to the 
t readmil l  speed for the left forel imb to 1.7 times faster than 
the others. Then,  the effect of t readmil l  movement  was 
ref lected in the oscil lator dynamics through each limb 
motion,  and the adapta t ion  dynamics p layed the role of 
adjusting the memor ized  gait pat tern.  The  gait pa t te rn  finally 
obta ined  in this s imulat ion is shown in Fig. 6b. This pa t te rn  is 
similar to the exper imenta l  result  with a decerebra te  cat. 
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Conclusions 

In this study, we extended our  mathemat ica l  model  of adap-  
tive behavior  in cat locomot ion to include actual l imb dy- 
namics. Results  similar to those of  the exper iment  can be 
obta ined  from the compute r  simulations. 

Future  work  will examine a quadrupeda l  walking robo t  
on the treadmill ,  and make  the robot  move adapt ively  on 
the t readmil l  as a real  cat does. 
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