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Abstract
When using an autonomous mobile robot, an environmental map should be created in advance. In this study, we propose a 
method for creating a point cloud data (PCD) map required for LiDAR localization in autonomous driving. The proposed 
method creates PCD maps from paper design drawings. For objects not depicted in the drawings, we introduce a tablet-scan, 
whose data are merged into the map created from the drawings. Three factors affecting the accuracy of self-localization 
are investigated during the map creation: the gap size in the PCD map, presence of the tablet-scan data, and random point 
alignment during the map creation. The effects of these factors on the localization accuracy are evaluated via simulations 
using actual scan data. Consequently, the existence of the optimal gap size and the accuracy enhancement using both the 
tablet-scan data and random point alignment are clarified. Moreover, autonomous driving using the PCD map created using 
the proposed method is successfully achieved.

Keywords  Autonomous mobile robot · LiDAR localization · Map creation · Point cloud data

1  Introduction

In factories, assembly processes necessitate the transporta-
tion of products and their assembling parts. For this pur-
pose, automated guided vehicles (AGVs) are employed to 

reduce human resources. “Guides,” such as mechanical rails 
or lines drawn on the floor of factories, are mainly used to 
show AGVs the way to their destinations. These guides are 
effective tools for limiting AGVs in their accessible areas. 
In addition, they facilitate positional recognition and colli-
sion reduction.

However, factories are needed to be rebuilt to reinstall 
these guides. In factories manufacturing various products, 
the production lines are rebuilt every time the products are 
updated. Job-shop-type factories have to rearrange their lay-
outs frequently. Therefore, depending upon the factory, there 
are cases when AGVs with guide equipment cannot be easily 
adopted, because the reinstall of the guides requires lots of 
time and costs.

Given the above background, we aim to develop an 
autonomous mobile robot (AMR) that does not require 
additional factory rebuilding for guides. We introduce an 
autonomous driving technology called LiDAR localiza-
tion to achieve navigation without guide equipment. The 
three-dimensional (3D) LiDAR localization we implement 
can certainly detect the current AMR position without any 
factory rebuilding. However, it requires the latest layout 
information (i.e., a “map”) for the localization instead. 
Particularly, our targets include factories whose layouts are 
frequently updated. Thus, obtaining the newest maps for 
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rearranged factory layouts becomes a problem. Actually, 
the maintenance of the correct map in a variable environ-
ment, i.e., the mapping technology, is crucial in the practi-
cal application of self-localization [9, 10, 12]

In the LiDAR localization system that an AMR is 
equipped with, the 3D maps have a data format called 
point cloud data (PCD). Simultaneous localization and 
mapping (SLAM) is effective for map creation. However, 
enhancing the map accuracy (e.g., by loop-closure detec-
tion or using sensors such as odometers or inertial meas-
urement units) requires enormous computation. Compared 
with SLAM, other methods [7, 13] create 3D PCD maps 
(we call them PCD maps in this study) in advance using 
techniques such as manual driving. These PCD maps cre-
ated in advance require lower computational costs and 
have better real-time properties for the localization than 
SLAM.

In this study, we develop a PCD map creation system 
whose input is a design drawing given as a paper and 
output is the PCD map of the inside of a building. We 
simulate the autonomous movement of an AMR using the 
created PCD map to demonstrate the effectiveness of the 
developed system. The remainder of this article is organ-
ized as follows. Section 2 describes a method for creat-
ing a PCD map from design drawings. Scans by a tablet 
computer with LiDAR are introduced in Sect. 3 to cope 
with the environmental changes inside buildings. Sec-
tion 4 demonstrates automatic driving using a PCD map 
from design drawings by an actual AMR. In Sect. 5, we 
examine how the accuracy evaluated by the transforma-
tion probability (TP) depends upon parameters, such as 
the gap size or tablet-scan data. Finally, we conclude this 
study in Sect. 6.

2 � PCD map creation from design drawings

2.1 � PCD format

A PCD map is written in the PCD format [3]. This format 
comprises a 3D-coordinate data part and a unique header 
part. Using LiDAR, a PCD file is automatically generated 
by the software provided by its developer in many cases. The 
file we wrote ourselves can also be recognized as a PCD file 
provided it matches the PCD format, including the proper 
header part. This means that we can intentionally place point 
(object) data at any position we desire in a PCD map. On 
this basis, we create a PCD map (i.e., a PCD format file) by 
computing wall positions from two-dimensional (2D) paper 
design drawings without a LiDAR-scan. Then, we make the 
most use of the geographical information in the drawings by 
electronically scanning them.

2.2 � Problem

Four problems are encountered in creating a 3D PCD map 
from 2D paper design drawings. 

1.	 Lack of height information
	   3D LiDARs can detect walls as 3D objects in build-

ings, because they can get the height information (Z-axis 
coordinates) using several lasers directed at different 
heights. Accordingly, the PCD file should have 3D data. 
By contrast, design drawings are usually 2D and do not 
have height information.

2.	 Scale unfitness
	   The scales of design drawings differ one by one. Thus, 

we must consider the map scale to generate the wall 
(object) data.

3.	 Point cloud density
	   In PCD maps, an object is expressed as numerous 

point data (a cloud of points) on the surface of the 
object. If the points are too dense, the computational 
cost increases. Meanwhile, if they are too sparse, the 
accuracy of the self-localization decreases. The density 
of the point cloud and to what extent the points in PCD 
maps should be upsampled (or downsampled) are criti-
cal issues.

4.	 Objects not depicted in drawings
	   Design drawings include only constructional infor-

mation. However, in real buildings, there may be some 
types of furniture in houses or some mechanical tools 
and inspection equipment composing production lines in 
factories. The presence or absence of such information 
affects the self-localization accuracy.

2.3 � Approaches to solving the problems

We consider the following approaches to solving the afore-
mentioned problems. 

1.	 Point accumulation to the height direction
	   The main place we aim to run an AMR is the inside 

of buildings, where the distance that the LiDAR detects 
is short compared with that outside of buildings. This 
implies that most of the laser reflects on the walls before 
it reaches the ceiling. Thus, in the PCD map creation, we 
accumulate points in the height direction to a sufficient 
height regardless of the situation.

2.	 Scale adjustment
	   We scale the PCD map manually at the final map crea-

tion stage according to the description on the design 
drawings or the actual measurements of a building.

3.	 Upsampling or downsampling
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	   The voxel grid filter (VGF) [6] is applied to downsam-
ple points when the PCD map is created from 2D paper 
design drawings. Conversely, upsampling is executed 
when enlarging the scale.

4.	 Tablet-scan
	   We use a LiDAR-mounted tablet computer to scan 

objects that are not in the drawings. The scan data are 
converted to the PCD format. Finally, we merge them 
with the PCD map created from the drawings.

2.4 � Upsampling and downsampling

2.4.1 � VGF

Autonomous driving requires real-time processing for locali-
zation. Numerous PCD points reduce the processing speed. 
In this regard, downsampling is an advantageous means for 
reducing computational costs.

VGF [6] downsamples points in a PCD map. It divides a 
space comprising several points in Fig. 1a into several voxels 
(Fig. 1b). Then, it calculates the centroid in the voxels as 
representative points and reconfigures the points (Fig. 1c).

VGF is generally applied for 3D PCD. However, we apply 
it to 2D drawings at the early stage before creating 3D PCD. 
Therefore, we divide the drawings as pixel units and not 
as voxel units. For instance, Fig. 2a is divided into several 
desired size cells (e.g., the side length (gap size) is 5 pixels 
in this example; Fig. 2b). Then, the centroid of black pixels 
in each cell is calculated, and all points in a cell are replaced 
with one representative point at this centroid position. As 
a result, a 2D image with downsampled points is obtained 
(Fig. 2c).

2.4.2 � Upsampling

After applying the 2D VGF, the output 2D points should 
be rescaled to adjust them to the actual size. This operation 
usually involves enlargement, which simultaneously expands 
the gap size. Sometimes, the gap size is larger than desired 

for the LiDAR localization. Thus, upsampling is required to 
increase the density of points during the rescaling process.

Now, all gap sizes between the PCD points are almost 
the same due to the VGF. Given this advantage, points can 
be easily interpolated to reduce the gap size to the desired 
value. Finally, the points are accumulated in the height direc-
tion, and the header part is added to complete the PCD map.

2.4.3 � Example of the system

We selected a certain facility at Gifu University as the exper-
imental site for autonomous driving. The PCD map in Fig. 3 
was created from its design drawing. First, the map was cre-
ated without VGF. It was downsampled in equal intervals, 
i.e., by picking up the rows and columns of every constant 
value from the pixel data. Although autonomous driving 
was achieved, the self-localization sometimes provided the 
wrong information because of the matching error between 
the LiDAR-scan data and the created map. Investigating 
the map, we found that the points’ distribution was uneven: 
dense in some places and sparse in others. In addition, there 
were some blanks at the position where the wall should have 
existed, as shown in the enlarged map in Fig. 3 (right). We 
considered that this must be the main reason for the match-
ing errors. Then, we applied VGF. The cell side length was 
set to 0.2 m when applying the 2D VGF. Owing to the VGF 
effect, the gap became constant and the walls were con-
nected without blanks (Fig. 4). This effectively reduced the 
matching error between the scan data and the created PCD 
map during autonomous driving.

Fig. 1   VGF algorithm

Fig. 2   VGF in 2D space

Fig. 3   PCD map downsampled in constant intervals
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2.5 � Outline of the application software

We developed a software application that enabled us to 
sequentially apply the aforementioned processes. The pro-
cesses that users must perform are as follows. 

1.	 Scanning factory design drawing data
	   A design drawing (we assume it is given as a paper) 

must be converted to an image data format (jpg., png., 
etc.) using an electronic device such as a scanner or a 
camera.

2.	 Preprocessing including binarization
	   After binarization, black pixels are regarded as walls; 

they are stored in an array (i.e., 2D point data) and used 
to create a 3D point cloud based on its geographical 
information. This is why, figures other than the wall 
(e.g., dimension lines) should be deleted in the preproc-
essing using image editors.

3.	 Running the application
	   Upon starting our application, the file where the data 

generated in Process 2 are saved must be designated. 
Then, the processes described in Sect. 2.4.1 are executed 
with some necessary parameter assignments. This pro-
cess outputs a temporary PCD map.

4.	 Checking the scale of the temporary PCD map
	   The end of Process 3 automatically starts a PCD 

viewer, which allows us to evaluate the distance between 
certain points on the current PCD map. The temporary 
PCD map created in Process 3 has the correct geographi-
cal relation between walls, but the scale is not correct 
from the actual buildings. This is because the image 
scanned in Process 1 depends on not only the scale of 
the original drawing but also the scanner resolution. The 
distances on the PCD map are evaluated between the 
points where the actual lengths are known.

5.	 Rescaling
	   The end of Process 4 automatically opens a pop-up 

window where the scale parameter can be input. The 
scale parameter should be obtained from the scale 

description on the design drawings or the actual meas-
urement of a part of the site. Actually, in Fig. 4, the 
corridor width denoted by the arrow was measured for 
rescaling the PCD map. Afterward, the rescaling and 
upsampling described in Fig. 4 are performed. Finally, 
the desired PCD map is output. A few seconds is 
required to obtain the PCD map from the design draw-
ings. Python was used as the programming language and 
included an image processing library, OpenCV.

3 � Layout change process

We can obtain the PCD map from the design drawings so far. 
However, the PCD map does not contain some objects that 
are not depicted in the design drawings, such as furniture, 
containers, and mechanical tools. If these objects are not 
reflected in the PCD map, the LiDAR localization refers to 
data different from the current environment in practical driv-
ing scenarios, resulting in critical matching errors.

This problem might be solved by adding the missing 
objects to the design drawings and then employing the 
proposed map creation system. However, the objects have 
various heights unlike the wall and the proposed method 
cannot handle them. Moreover, as is often done, if we scan 
the inside of a building using an AMR with LiDAR, we 
can create a map that includes all objects. Nevertheless, our 
design policy avoids this method, because it is not easy for 
factory workers to operate AMRs for map creation.

In this study, we propose another method, “tablet scan,” 
where a LiDAR-mounted tablet is used to scan the missing 
objects. As the result of the tablet-scan, the real-scale PCD 
of the object is obtained. Tablets are easier to handle because 
of their user-friendly interface than LiDAR alone on an 
AMR. Many people might already have tablets or consider 
them worth purchasing, because they work as computers. 
Afterward, the obtained data are merged with the PCD map 
created using the proposed system. This merging process 
is still a manual task on the software “Cloud Compare” [2] 
placing the scan data using a mouse. It is important to scan 
together the extra “key frame” such as the walls that surely 
exist in the design drawings. This key frame allows us to 
place the object data in an accurate position easily.

Figure 5a depicts the PCD map where the stairway data 
shown in Fig. 5c scanned by the tablet are merged with the 
PCD map we created from the design drawing. Figure 5b 
shows a picture of the stairway. In fact, the original design 
drawing contains the stairway, but the space that the stairway 
occupies in the building does not have a constant height (i.e., 
there is an empty space below or above the stairway). A 
special process that our map creation system cannot perform 

Fig. 4   PCD map downsampled by the 2D VGF
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is required to reflect this space in the PCD map. Thus, the 
tablet-scan method is used to express such a spatial property 
correctly.

Figure 6 depicts the tablet and a scene of the tablet-scan. 
An iPad Pro (Apple Inc.) was used for the tablet-scan.

4 � Autonomous movement experiment

We experimented to verify whether the PCD map created 
using the proposed system allows an AMR to travel autono-
mously executing self-localization.

Figure 7 shows the AMR used in the experiment. It 
mounts a 3D LiDAR (Velodyne-16: Velodyne LiDAR 

[5]). Autoware [1] works as a control system in the Robot 
Operation System [4]. Normal distribution transform (NDT) 
matching was operated as the self-localization algorithm 
[11].

Figure 8 depicts the LiDAR-scan data and AMR’s self-
position. The reference trajectory, which was planned on the 
PCD map created by the proposed system, is also depicted. 
As shown in every-second snapshots in Fig. 9, though the 
experiment differs from that in Fig. 8, the map created from 
the drawing enabled an AMR to self-localize and drive 
autonomously.

In the future, the proposed map creation method should 
be tested at different places and improved further to ensure 
a robust map-creating process.

5 � Accuracy verification

5.1 � TP

In this section, we verify the self-localization accuracy to 
prove the effectiveness of the proposed system . We adopted 
TP for the assessment [8]. TP is an index of scan matching 

Fig. 5   PCD map where an obstacle PCD is overlaid

Fig. 6   Tablet-scan. left: Tablet used in the experiment. Right: a scene 
of a tablet-scan

Fig. 7   AMR used in the experi-
ment

Fig. 8   Reference trajectory (a bold dark line) and localization result 
on the created PCD map. About 20 plotted via points designate the 
reference trajectory by interpolating them. The numbers near the via 
points denote the speed there
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that expresses the matching level between a reference PCD 
map (environment PCD map) and the current LiDAR-scan 
data. When the TP value is zero, the matching is unstable: 
the self-localization does not converge to a constant value. 
According to the reference [8], a TP value greater than 2 is 
preferable for sufficiently stable computation.

5.2 � Method

We can specify the gap size between points when making 
PCD maps. In Fig. 5, for example, the gap size of the PCD 
map is selectable in the proposed system and is set to 0.2 
m in this case because of the following reason. Autoware 
also contains a function that creates a PCD map based on 
LiDAR-scan data, and its default value is 0.2 m.

However, we should adjust the gap size according to the 
environment. For example, the average distance between 
the LiDAR and walls differs when an AMR runs in a small 
space, such as a classroom, or a wide space, such as a fac-
tory. Thus, we can guess that the suitable gap size changes 
depending on the situation. In addition, the variance of 
the point distribution in the created PCD map or the pres-
ence/absence of tablet-scanned objects certainly affects the 
matching accuracy. In the following section, we compare 
TP values among various PCD maps created using different 
combinations of these parameters.

The experiment was performed in the same building 
shown in Fig. 4 or Fig. 5. As shown in Fig. 10, six points, 

Points A–F, were selected as the test points of accuracy. 
At these test points, the 3D LiDAR was left to stay at least 
10 s one by one in several orders. All the LiDAR data were 
recorded as ROSBAG data with the ROS function. Using 
the same ROSBAG data, the PCD maps created from 
different parameters were evaluated using the TP index. 
The results obtained in the order C →F→B→E→A→ D are 
presented in the next section, although experiments were 
performed in the six different orders.

Fig. 9   Snapshots of the AMR movement

Table 1   Parameter combinations

Map name Gap size (m) Randomness Object  PCD  
(stairway)

NonStairway0.5 0.5 No No
NonStairway0.4 0.4 No No
NonStairway0.3 0.3 No No
NonStairway0.2 0.2 No No
NonStairway0.1 0.1 No No
NonStairway0.05 0.05 No No
NonStairway0.025 0.025 No No
Stairway0.4 0.4 No Yes
Stairway0.025 0.025 No Yes
rdm_NonStair-

way0.4
0.4 Yes No

rdm_Stairway0.4 0.4 Yes Yes
LiDARmap Using LiDAR on AMR

Fig. 10   Six test points, A–F, in the experiment. Top: six points’ posi-
tion on the photo and bottom: their position on the PCD map
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5.3 � Parameters

We created some PCD maps for autonomous driving simu-
lations by setting different values for the following three 
parameters. The combinations of these parameters are shown 
in Table 1.

1.	 Gap size
	   We expected an optimal gap size in the PCD maps. 

For the matching computation between the LiDAR-
scan data and PCD map, we used the NDT matching 
algorithm [11]. There, the distribution of points in each 
voxel was approximated as the Gaussian distribution. 
We assumed that the shape of the Gaussian function did 
not change so much even if we set a too-small gap size, 
indicating that small gap sizes do not always improve 
the matching accuracy. Conversely, too-large gap sizes 
do not express the existence of walls correctly. In this 
section, we sought the optimal gap sizes by setting the 
gap size to 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 m.

2.	 Tablet-scan
	   Next, we examined the effect of the tablet-scan 

explained in Sect.  3. Actually, an AMR can detect 
objects that do not exist in design drawings. If these 
objects are small, their influence on the matching accu-
racy is minute. However, some large objects, such as 
machining tools, reflect the laser for scanning in a wide 
area such as the wall, which certainly influences the scan 
data for matching. Thus, we confirm whether the tablet-
scan data improved the self-localization accuracy. The 
staircase was selected as a large object to scan by the 
tablet.

3.	 Random point alignment
	   In Fig. 4, many points align on a straight line, because 

the walls were drawn as straight lines in the original 
drawings. If such a distribution is expressed by the 
Gaussian function, the variance to the wall becomes 
zero. In the NDT matching, the gradient of the Gaussian 
function is used to estimate the current position. Steep 
slopes such as zero variance will make this estimation 
difficult if the initial position for the detection is far from 
the optimal position. Thus, we intentionally placed the 
points of the wall randomly instead of in a straight line 
(Fig. 11).

Figure 12 shows the time course of TP during the experi-
ment. At the six points, the 3D LiDAR is fixed and the TP 
value stabilizes at a constant value. The TP value sometimes 
varies sharply between the points, because the 3D LiDAR 
moves from one test point to another.

“LiDARmap” used the map created from the PCD 
scanned by the LiDAR on the AMR using the Autoware 
function. We expected the “LiDARmap” to produce the 

better self-localization result. As expected, “LiDARmap” 
had the highest TP value among all the maps. Notably, the 
highest TP value of the “LiDARmap” is just a reference to 
indicate that accuracy can be enhanced to this value.

First, we examined the effect of gap size. Figure 12a 
shows that NonStairway0.4 had the highest TP value. It 
also shows that some matching errors occurred in Non-
Stairway0.025 and NonStairway0.05. The results show that 
smaller gap sizes do not always improve the matching accu-
racy but rather decrease it.

Next, the effect of tablet-scan data was examined for 0.4 
and 0.025-m gap sizes, the best and worst sizes, respectively, 
in Fig. 12a. The results are shown in Fig. 12b. The map 
with the 0.025-m gap size failed in the self-localization in 
around 40 s without the tablet-scan data. Nevertheless, the 
addition of the tablet-scan data enabled us to keep the self-
localization throughout the simulation period. Compara-
tively, the tablet-scan data improved the TP in the map with 
the 0.4-m gap size. These results indicate that the tablet-scan 
data surely increase the matching accuracy.

Finally, the effect of the random point alignment was 
investigated by introducing this process to the map with the 
best gap size (0.4 m). As shown in Fig. 12c, the matching 
accuracy increased in both maps with and without the tablet-
scan data. Overall, the map with the 0.4-m gap size and with 
both the tablet-scan data and random point alignment was 
the best combination. The map with the best combination 
never made any matching errors in five consecutive self-
localization simulations. These results demonstrate that the 
proposed system is applicable to map creation.

6 � Conclusion

In this study, we proposed a method for PCD map crea-
tion from paper design drawings and developed a soft-
ware application to easily apply this method to the map 
creation process. The proposed method has the following 
advantages. It can provide a PCD map without visiting the 

Fig. 11   Downsampled and randomized PCD map
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workspace of AMR. Particularly, even if the workspace is 
vast, no scan is required. Thanks to this property, the route 
of an AMR can be planned based on the created PCD map 
in advance before the AMR is actually introduced. Such an 
AMR can operate immediately at the site. This merit can-
not be obtained if the PCD map is created simultaneously 
with the self-localization. Indeed, objects not shown in the 
design drawings might be many, requiring an actual envi-
ronment scan. If so, the proposed method employs a tablet 
with LiDAR, which has a friendly graphical user interface, 
works as a laptop, and above all, is less expensive than a 
3D LiDAR sensor. The ease of scanning the workspace is 
another advantage of the proposed method. Moreover, the 
skip of the LiDAR-scan (i.e., beforehand AMR operations 
for the manual scan widely used in the traditional methods 
) shortens the PCD map creation time and reduces the 
required labor for AMR manipulation. Comparatively, our 
application software runs so quickly, completing the PCD 
map creation in a few seconds after inputting an image. 
Further, our system allows us to partially update the PCD 
map easily without recreating the entire PCD map, imply-
ing that we can flexibly incorporate layout rearrangements.
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(b) Effect of the tablet-scan data
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(c) Effect of the random point alignment

Fig. 12   TP in the self-localization simulations without the LiDAR
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