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Abstract

Quadrupeds can acquire new gait patterns with re-

spect to the environmental changes. Yanagihara et al.
have demonstrated this adaptability by experiments
of a decerebrate cat. These experiments indicate that
quadrupeds gradually adapt to their environment by
repeating locomotion in the steady environment, and
that the acquired gait pattern is pers1stently memo-
rized after the locomotion.

Our research aims at formulating the mathemati-
cal model of these cats’ behaviors and constructing a
quadrupedal walking robot to realize such an adaptive
behavior. By now, we have proposed a mathematical
description for adaptation at the level of gait pattern
generation using the neural oscillators. In this paper,
we extend it to take into account the limb dynamics.
We study on how to design the interaction of the os-
cillator and:limb dynamics ]

key words : quadrupedal locomotion, gait pattern,
adaptation, periodic perturbation, coupled oscillators,
limb dynamics :

1 Introduction

Adaptation in quadrupedal locomotion can be ob-
served in the experiment of decerebrate cats. As a
result of adaptation, the gait pattern changes to an-
other steady one. Yanagihara et al. [1}[2] have demon-
strated this adaptation process using a specially de-
signed treadmill (Fig. 1). Their treadmill consists of
three moving belts. Each belt can be driven indepen-
dently with the different speed. Firstly, they drove-all
the treadmill belts with the same low speed. After
some training, the decerebrate cat naturally showed

the ‘walk’ gait as the intact cats. Next, they changed -
the speed of one treadmill belt (on which the cat places

its left forelimb) 1.7 times faster than the others, and
observed the cat’s behavior through three trials. Each
trial includes 60 to 100 steps, and the interval between
each trial was about a few minutes. At the first trial,
the gait pattern of the cat did not converge to the
steady one. But at the second trial, it converged to a
new gait pattern after some steps. At the last trial,
the cat showed the acquired new gait pattern from the
beginning of the locomotion experiment:

In order to examine the stability of the gait pattern,
it is efficient to impulsively disturb the locomotion.
However, under the environment of the non-regular
perturbation, a new gait pattern can not be acquired:
The gait pattern soon goes -back to the original one
due to its stability. In the experiments by Yanagihara
et al., the cat locomotion is perturbed whenever the
cat places its left forelimb on the treadmill belt. It
means that the locomotion is perturbed periodically.
It is under such periodic perturbation that the new
gait pattern was generated. -

In this paper, we aim at formulating the mathe-
matical model of these cats’ behaviors for constructing
a quadrupedal walking robot. We have already pro-
posed a mathematical description for adaptation using
the neural oscillators [3]. Here, we extend it to take
into account the limb dynamics. Then, the coupling
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Figure 1: Experiment with a decerebrate cat.
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Figure 2: Mechanism of adaptation in perturbed locomotion.

of oscillator and limb dynamlcs becomes an important
problem.

2 Adaptation mechanism

The experimental results by Yanagihara et al. pro-
vides us the following ideas: Firstly, the cat had
memorized the walk gait for the normal environment,
When the speed of the treadmill belt changed, this
walk gait was not suitable to the changed environ-
ment. Accordingly, the cat adjusted the memorized
gait pattern into a new one by repeating locomotion.
The fact that the new gait pattern emerged at the
beginning of the third trial of experiment implies the
evidence that the cat memorized the new locomotion
pattern.

We formulate this adaptation process as follows:
Firstly, when we think about the gait pattern, we fo-
cus on the relative phases of four limbs’ movements.
Although each limb movement is dynamic and peri-

odic, the relative phases will be constant if the gait -
pattern becomes steady. Then, we can regard the gait’

pattern as the fixed point in relative phase space. Us-
ing the potential function for simplicity, the steady
gait pattern corresponds to the minimum point of the
potential function in the relative phase space.
Initially, the cat walked on the treadmill with the
‘walk’ gait. Accordingly, the cat memorized the walk
gait for the normal conditions (i.e., all the treadmill
speed is the same). So,’ we can ﬁrstly represent the
walk gait as the mimmum point-of the potential func-
tion. From the characteristic of poténtial function, the
memorized motion pattern is stable, in other words it
is an attractor in relative phase space Even though
locomotion is perturbed impulsively; its pattern will
soon comes back to the original one. However, if per-
turbation becomes periodic, the next perturbation will
disturb the motion pattern again before the motion

pattern completely comes back. Consequently, the
perturbation and gradient force of potential will bal-
ance each other where the relative phase is different
from the memorized one.- :

.Note that the gradient force is a force which tends to
realize the memorized motion pattern. Even though
such a gradient force is always working, this gradi-
ent force fails to produce the memorized pattern. It
means that the memorized motion pattern is not suit-
able to the environment. Therefore, the memorized
pattern should be adjusted so that the gradient force
can achieve it. In other words, the attractor in mation
pattern should be adjusted to decrease the gradient
force. We consider this adjustment process as ‘adap-
tation’. :

3 Formulation of adaptive behavior
3.1 Assumptions

Our final goal is to realize such an adaptive behav-
ior of the decerebrate cat by a quadrupedal walking
robot. In the previous paper, we have formulated the
adaptation mechanism with mathematical expression
[3]. In this study, we extend it to include the limb dy-
namics. Here, the coupling of the oscillator and limb
dynamics, i.e., how to design the interaction of two
dynamics, becomes an important problem. Figure 3
is a sketch for our quadruped model examined in this
study. We summarize our important assumptions for
this problem:. '

.® The walking motion is restricted within the sagit-
tal plane.

e The balance of the body is not considered, i.e.,
the body i is supported at the fixed position on the
treadmill.
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Figure 3: A model of adaptive behavior in the cat
locomotion.
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o Four [imbs have the same structures and perform
2 DOF of the motion: the rotation of the joint
between body and limb («;), and the contrac-
tion/extension of the limb (r;).

e The step length is constant (asp_s < ; < agpg)
for each limb with no relation to the walking
speed.

o The ground reacting force from the treadmill is
detectable.

The CPG (Central Pattern Generator) is a spinal neu-
ral oscillators responsible for thythm generation of lo-
comotion. In our model, each limb motion is mainly
controlled by the neural oscillator model assigned to
the limb.

We should define both the control law for the limb
and the oscillator dynamics, separately in the swing
phase and the support phase. This is because that the
naturé of the limb movement is essentially different in
these two phases. In addition, we must define the dy-
namics of adaptation process to achieve an adaptive
behavior. Therefore, three dynamics are important:
the support phase dynamics, the swing phase dynam-
ics and the adaptation dynamics.

3.2 Preparations

. We express the phase of oscillator by the variable
6;(¢i = 0,1,2,3). The phase space becomes the one
dimensional torus space. We split the phase space to
two regions: the region satisfying cos6; > cosnf = v
and the remainder, as shown in Fig. 4. The constant
parameter 3, which denote the ration of the support
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Figure 4: Stance phase and swing phase. In this case,
only the LF (6y) is in the swing phase and the others
(LH, RF, RH) are in the stance phase.
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Figure 5: The structure of the limb. Each limb has

2 DOF: rotation (a;) and contraction/extension (r;).
F; is a ground reacting force.

phase in the one locomotion step, can control the duty
factor. o

The limb has two link structure attached the body,
as shown in Fig. 5. We express its dynamics for it as

Mi(g:)di + Hi(gi, 1) + Gilg) = 7+ JT(Qi)Fi (1)

‘Where ¢ represent the number of the limb (i=0,1,2,3),

¢i = [, ;)T is a joint angle (superscript T denotes the
transpose), 7; is a joint torque, M is an inertia ma-
trix, H; denotes the coriolis and centrifugal force, G,
denotes the gravitational force, F; is a reacting force
from treadimill; and J is a Jacobian matrix.

3.3 Support phase dynamics

In the support phase, the limbs support the body,
and their movements are constrained by the treadmill.
The limb has to generate the large force along'the grav-
itational direction while follow the treadmill move-
ment along the horizontal direction. Accordingly, we
apply the impedance control such that high-impedance
in the gravitational direction and low-impedance in
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the horizontal direction. We can compute the joint
torque 7; so that the response to the g10u11d reacting
force F; becomes

MyX; + Dy(X; — Xai) + Ka(Xi - Xu)=F; (2)

where X; is the position of the toe in the absolute
coordinate, Xg4; is its desired position, My, Dy and
K4 are matrices denotlng the desired inertia, viscosity
and elasticity. '

In order for the CPG to generate the locomotion
rhythm appropriately with respect to the environ-
ment, the position or moving velocity of the limb
should be fed back to CPG. Therefore, we change the
oscillator phase in the support phase according to the
limb movement. We assumed that the step length of
the limb movement is constant (agp_s < a; < agp_y)
as well as the range for the support phase in the os-
cillator phase space (0sp_s < 0; < 05p_s), as shown in
Fig. 4 and Fig. 5. Tt provides the initial and final
condition to the relation between the phases of the
oscillator and limb movement. Under this condition,
we compose some continuous mapping from the limb
position to oscillatof phase, -

0; = P(CI{;‘), (3)
such that,

Osp_s = Plogp_s), Oop_g = Pasp_g). (4)

Here, we focused on the joint angle «; between body

and limb, when considering the phase of the periodic

limb movement (Fig. 5). Using the above equation,

we define the oscillator dynamics in the support phase,
N oP (oz,-) . E

0; = ——2aq;. 5

o @ (5)

3.4 Swing phase dynamics

In the swing phase, the limb is released from the
constraint of the treadmill and can move freely. The
timing of limb movement, in. other words, the rela-
tive phases of limb movement, can be modified in this
swing phase. So, in the swing phase, CPG governs the
dynamics of the limb movement. We can calculate the
desired value of a;, i.e., ag; from the oscillator phase
6;. It is because that, as is the case of the support
phase, we have already known the initial and final con-
dition for the relation between 6; and «;. we control
the limb movement so that the limb movement follows
this desired value ay;.

The CPG, on the other ha,nd must produce the
oscillation pattern, i.e., phasic relatlon of four oscilla-
tors, which should be memorized as the preferred gait

pattern. Using the method proposed by Yuasa and Ito
[4], we can control the relative phases ¢ = 8 — 8,
¢1 = b — 07 and ¢y = 03 — Gy, to their desired value
Dy, Dy and D, by the potential function defined in
the relative phase space,

V= %Te[(sf’o +¢1— Do — D1)’ + (=3 + Ds)?
+(=¢0+ ¢2+ Do ~ D3)* + (=1 + D1)*].  (6)

According to this potential function, the dynamics of
the relative phase become the gradient system,

. v .
;= _gg;a (.7 =0,1, 2)- (7)

Further calculation provides the following oscillator
dynamics:

bi=wi+fi, (1=0,1,2,3). (8)
Here w; (i = 0,1,2,3) denotes natural frequency of
neural oscillator, and f; (i = 0,1,2,3) are oscillator
interaction given as :

fo=19(61 +33—290—D0—D1), (9)
fi = 76(80 + 62 — 201 + Dy — Dy), (10)
fo = 19(01 — 62 + Dy), (11)
fa = 19(60 — 03 + Dy). (12)

Note that the memorized pattern is described not only
by the desired relative phases Dy, D; and D, but also
the natural frequency of neural oscillator w;.

3.5 Adaptation dynamics

At the normal locomotion, CPG produces the walk
gait using the potential function eq.(6) for the appro-
priate D;(j = 0,1,2) and w;, (i = 0,1,2,3). Then,
from the characteristics of the potential function, the
oscillator interaction does not work, because the walk
gait is a minimum point of potential function. How-
ever, if the treadmill speed increase, the perturbation
push away the motion pattern from a minimum point,
and the steady pattern emerges at the different point
from the minimum point. Consequently, oscillator in-
teraction always works to realize the memorized pat-
tern.

Then, as mentioned in the previous section, we ad-
just the memorized motion pattern so that the oscil-
lator interaction decrease. We prepare two type of
evaluation function,

F =/ fidt, (13)
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To decrease eq. (13), we can derive the dynamics

W = ‘m+¢3/ﬂa @_0123) (15)

while for the eq., (14), We can obtain the followmg
equations:

D= 4 [(o— e, o
D§"+1) = D{") + Tpfv/(fo = fydt, . (A7)
” . i T L B '

Dé"*” = Dé"’ + 7 /(fl = f2)dt, < (18)
T
where n denotes the number of step cycles, T'is the du-
ration of one step cycle; and 7,, and Tp are parameters
" that mﬂuence the convergence of w; and DJ, respec-
tively.

These parameters should be adjusted slowly, be-
cause we can not adjust them is until we know the
evaluation for these pardineters. Therefore we define
the adaptation' dynamics discretely at every locémo-
tion cycle. In addition, we set the time constant D

and 7, smaller enough than that of osc1llator dynam—
ics, i.e., 7y.

4 Simulation

We executed the computer simulation according to
the defined dynamics. Firstly, we confirm that the
CPG certainly produce the walk, gait at the normal
environment. The gait pa,ttern obta.med in thls simu-
lation is shown'in Fig: 6 (). ‘ T

Next, we increased the parameter corresponding to
the -treadmill speed for the left- forelimb, 1.7 times
faster than ‘the others. ‘Then, the effect of tread-
mill movement was reflected to the oscillator dynam-
ics through each limb metion, and the adaptation dy-
namics played a role of adjusting the memorized gait
pattern. The gait pattern finally obtained in this sim-
ulation is shown in Fig. 6 (b). This pattern is similar
to the experimental result with a decerebrate caf.

5 C'onclusiqn '

In this study, we extended our mathematical model
of adaptive behavior in ‘the cat locomdtion' to 'include

LH

" RH

" (a) normal condifion,

LF

- (b) péftﬁﬂ“)edj c':oliqdi‘t"ioh.’v S

Flgure 6 The gait pa.ttern results of the computer
simulations. :

the actual limb dynamics. The similar results to the
experiment can be obtamed from the computer simu-
lations. ' : : S

As the future works, we will practically examine
a quadrupedal Walkmg robots on the treadmill, and
make the robot to move adaptively on the: treadmlll
as a real cat. : :
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