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a b s t r a c t

This study investigates the dynamics of the propulsion mechanism of a two-wheeled skate-
board by measurements of human skateboard motion and computer simulations using a
simplified model. This model expresses the board motion within the horizontal plane.
The inputs of the model are the yaw moment about a vertical axis, horizontal force normal
to the skateboard axis, and two-wheel orientations, while the outputs are the center of
mass position in the horizontal plane and the board orientation. By selecting parameters
of sinusoidal inputs to fit the measurement data, similar output data is obtained from
the motion measurements and computer simulations. This result allows us to conclude
that some sinusoidal motions and forces can robustly propel this type of skateboard.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Mobility is an ability to move from one place to another and allows biological systems to enlarges their activity area. To
achieve mobility, wheeled systems are occasionally utilized, which enable faster spatial movement than legged systems on a
flat terrain.

Some wheels in automobiles are active, i.e., are directly driven by an engine or a motor. Although active wheels are con-
venient for controlling the speed, all the wheels should not be necessarily active; the active wheels require complex mech-
anisms for drive transmission, which not only increases the weight but also includes some parts causing mechanical troubles
by wearing. More energies are required to drive many wheels. Therefore, passive wheels are partially adopted in some
wheeled systems.

The rotation of the passive wheels requires some kinds of forces from the outside instead of the direct driving force of
the wheel axis. A roller skate is an example of a device that consists of all passive wheels, where the propelling power is
produced from the leg motion kicking the ground: the wheels under the supporting leg rotate by the propulsion of ground
reaction force which the other leg generates by directly pushing the ground backward. However, the effective use of de-
grees of freedom (DOF) of motion of a mechanism mounted on passive-wheel systems can propel the wheeled system
without kicking the ground. Skateboards [1,2], snakeboards [3] or other vehicles are examples of such systems [4–7]. Espe-
cially, the snakeboard was studied much by Ostrowski and Burdick [8–10], Marsden and Ostrowski [11], Ostrowski [12],
Ostrowski et al. [13], McIsaac and Ostrowski [14], and was discussed much from viewpoint of dynamics reduction
[15–17], structure of dynamics [18–23], controllability [24], stabilization of numerical solutions [25] or non-holonomic
control [26–36].
. All rights reserved.
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Fig. 1. Two-wheeled skateboard. It consists of two plates, front and rear, which can be twisted around the center line. The wheel is attached on the center
line at each plate. The rotation axis of the wheel orientation inclines backward.
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Recently, a new type of two-wheeled skateboard has become available in the market, which has an additional degree of
freedom around its roll axis, as shown in Fig. 1. Two wheels are attached to the center line of the board: one to the front plate
and the other to the rear plate. The rotation axes of each wheel orientation are inclined backward, which defines the trav-
eling direction of the board (to the left in this figure) since wheel orientation is restricted. The rider who is facing sideways of
the board places a foot on each plate. In this way, the board moves in the lateral direction of the rider. To propel the board,
the rider repeatedly moves his foot back and forth alternatingly relative to the waist with keeping the contact to the board,
which provides yaw moment to the board about a vertical axis. In addition, the two plates are twisted around the roll axis by
changing the action point of the body weight at each foot. This twist affects the direction of the two wheels because of the
backward inclination of the orientation axis.

This type of skateboard can be smoothly accelerated from a stationary state. For acceleration of the board, both the yaw
moment from the rider on the board and the twist between the two plates are important. The twist around the roll axis al-
lows one to change the orientation of the two wheels; such an active control of the wheel orientation seems to contribute to
rapid traveling motion by facilitating steering actions, because the wheel orientation perpendicular to the propulsion pre-
vents the board from running, while the parallel wheel orientation helps it to go ahead.

Based on the above characteristics, we are investigating the propulsion mechanism of this kind of two-wheeled skate-
board. At the first step, the goal of this paper is set to clarify what kind of human inputs is crucial and what kind of input
trajectories can successfully propel the board by considering how the yaw moment works and how the twist of the plate
should be treated from the aspect of steering the wheel orientation. The replay of a successful skateboard motion is needed
at first to investigate its propulsion mechanism, which follows the clarification of the inputs and their trajectories. Therefore,
the goal in this paper is one of the important factors for our purpose.

2. Method

In this study, we take the following steps based on both motion measurements and dynamical simulations:

(1) The two-wheeled skateboard is described using a reduced-order model in order to focus only on the propulsion inputs
to the board. In this reduced-order model, the ‘‘inputs’’ are yaw moment around the center of mass (CoM) of the board,
normal force (the force exerted to the CoM that is normal to the board orientation), and wheel direction.

(2) To investigate what kind of input trajectory can propel the skateboard, skateboard motions are measured. This is a
pilot experiment for rough estimation of the input trajectory.

(3) Using data from these measurements, trajectories of the inputs (except the yaw moment) are constructed by function
approximation.

(4) Next, these input trajectories are applied to a computer simulation, whose dynamics are derived from a previous
reduced-order model with the velocity constraints of the wheel (wheel does not slip to the wheel axis direction).

(5) Then, parameters of the yaw moment are selected, so that the simulation results match the measured data well.

Using these steps, we clarify the inputs from the rider that successfully propel the skateboard in the form of time-varying
trajectories.
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Fig. 2. Two dimensional model of the two wheeled skateboard. The coordinate frame is defined so that the y axis coincides to the central axis of the initial
skateboard position, and the x axis becomes normal to the y axis. (X,Y) is the CoM of the skateboard, h is the orientation of its central axis from the y axis,
(Xwi,Ywi) is a wheel position, ai is an orientation of the front and rear wheel, FX and FY are respectively the force form the rider on the board in the x and y
direction, FN is its normal component to the current skateboard orientation, T is a moment from the rider, Fci and FFi is a component of the ground reaction
force at the wheel in the normal and tangential to the wheel direction. Here, i = 1, 2 in which i = 1 denotes front side, and i = 2 does rear side.
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3. A reduced-order model

The two-wheeled skateboard has many DOFs: plate twist, wheel orientations, lateral balance, and wheel rotation. To sim-
plify the motion analysis, we assume the following:

� The lateral balance of the board is controlled by the rider’s waist extension/flexion, independent of the propulsion, imply-
ing that this DOF can be ignored when only the propulsion motion is considered.
� The board can be twisted around its central axis. The weighted position of each of the rider’s feet out of the central axis

twists two plates each other. This twist affects the orientation of the wheels. Thus, if the wheel orientation is directly
regarded as input instead of the weighted position, the twist between the plates is ignored.
� The alternatingly back-and-forth motion of the rider’s feet on the board never produces net force parallel to the board

orientation because the parallel forces are canceled each other following the action–reaction law of the force. This means
that both the yaw moment and normal force are input forces from the rider.

Based on these assumptions, the board motion is expressed by a two-dimensional model, as illustrated in Fig. 2. The mo-
tion of this model is described by a first-order, six-dimensional, differential equation with two velocity constraints (see
Appendix A).

In this motion equation, the inputs to the board are the yaw moment T, the normal force to the board FN, and the wheel
orientations a1 and a2. To simulate the board motions, a time profile of these inputs is required. We obtain them except T by
approximating measurement data of the skateboard motion, and determine T so that the measurement data and the simu-
lation data will match well.
4. Motion measurement of a two-wheeled skateboard

4.1. Objective and measurement conditions

The objective of this measurement is to identify the inputs to the board: the yaw moment T, the net horizontal force FN

normal to the board orientation, (which are applied around/to CoM of the board by both feet), and the wheel orientations a1

and a2.
The board motion was measured by a motion-capture system as shown in Fig. 3. This system has four high-speed cam-

eras, which capture 640 � 480 pixel images at 120 frames per second. A flat area of approximately 0.5 m � 3 m was prepared
as measurement space, so that all markers would always be captured by at least two cameras. To detect the board motion,
three markers were attached. The first marker was attached to the center of the board, because the center of mass (CoM) of
the board is located here due to the symmetrical board structure. To detect the wheel orientation, the marker should have
been attached just above the joint of the two-wheel caster. However, the feet of the subject were placed at this position, so
the marker was attached to two toes of the subject. A 41-year-old male subject, weighing 65 kg, was asked to propel the
board from the rest state and then to maintain straight motion until the end of the measurement area for a constant period.
The feet of the subject were placed at the center of the two plates, so that the markers were as close to the joint center of the
wheel orientation as possible, and the line connecting the two markers was parallel to the board.

Five trials were conducted under the above conditions. These measurements were executed with permission (No. 21–
127) from the ethics committee of our organization.
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Fig. 3. Measurement setup. Motion capture system with four cameras measures the position of the three markers attached on the center of the skateboard
and toes of the subject in every 1/120 s.
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4.2. Data processing and results

Let PC, PL and PR be marker positions attached to the center of the board, the left toe, and the right toe, respectively, as
shown in Fig. 4. The board direction h is obtained from the angle between the line PLPR and the goal direction.

In contrast, the board CoM position, velocity, and acceleration are automatically obtained from the motion-capture sys-
tem based on PC’s captured data by numerical difference operation without filter (a band-pass filter is applied later). Mul-
tiplying the mass by its acceleration data, the force from the subject to the board FX is obtained (see Appendix B). Using
the board orientation h, the normal force FN can be computed as
Fig. 4.
VL and
FN ¼ FX= cos h: ð1Þ
The wheel orientations a1 and a2 are approximated as those of the velocity vectors of the markers on the toes by assum-
ing that the distance between the rotation joint and the marker is sufficiently small. Thus, the wheel orientations are com-
puted by
a1 ¼ tan�1 VLx

VLy

� �
� h; ð2Þ

a2 ¼ tan�1 VRx

VRy

� �
� h: ð3Þ
Here, VL = (VLx,VLy) and VR = (VLx,VLy) are the velocity vector of PL and PR, respectively.
The yaw moment T cannot be measured using this measurement setup. Thus, T was identified so that the simulation re-

sult computed using its dynamical model in Section 3 matches the measured trajectory of the board traveling in the goal
direction.
goal

lleft foot

right foot

Input calculation. In this figure, PC, PL and PR are marker positions attached respectively to the center of the board, the left toe, and the right toe, and
VR are the velocity vector of the marker PL and PR, respectively.
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(b) Front wheel orientation α1.
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(c) Rear wheel orientation α2.

Fig. 5. Measurement result of the board motion.
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4.3. Results

The values of F, a1 and a2, which are computed from the three markers’ information, are depicted by solid lines in each
graph of Fig. 5. This is the last of the five trials, and the best data in the sense that the period variation of the data in a1 and a2

is small, as seen in the next section.

5. Input trajectory construction

5.1. Sinusoidal input approximation

In this section, we construct approximated curves of each input: the normal force and the wheel directions. The obtained
curves will be utilized as the input of the computer simulation.

Because of the periodicity, sinusoidal functions are used to make approximated curves of the measurement data obtained
in the previous section, because the sinusoidal functions are compatible with the frequency analysis we adopt later.

It is natural to assume that the frequencies are the same for all the inputs as an output, i.e., a periodic skateboard motion.
Thus, we utilize the following functions for each input:
a1 ¼ â1A sinð2pf̂ t þ /̂1Þ; ð4Þ
a2 ¼ �â2A sinð2pf̂ t þ /̂2Þ; ð5Þ
FN ¼ bF A sinð2pf̂ t þ /̂FÞ; ð6Þ
T ¼ bT A sinð2pf̂ t þ /̂FÞ: ð7Þ
Here, it is assumed that F and T have the same phase shift /̂F because they are originally generated from the same motions,
that is, the alternating back-and-forth motions of both feet on the board with a contact that are usually a half-period out of
phase.

In the above equations, unknown parameters are frequency f̂ , the amplitudes bF A; bT A; â1A; â2A and the phase lags
/̂F ; /̂1; /̂2.

5.2. Frequency estimation

In order to identify the frequency of the motion, spectrum analysis was performed. The frequency should be detected
from the input signals because the periodic board motion is produced from such input signals. However, there is no data
for the yaw moment, and the normal force is noisy because it is computed by differentiating the CoM position data. This
is the reason why the data of two wheel directions was utilized.

The peak frequencies, i.e., the dominant frequency in terms of the frequency domain power plot, should be match in the
front and rear wheel orientations; however, it usually fluctuated in actual measurement data. Thus, the average of two peak
frequencies was selected as the peak frequency of the board motion.

5.3. Phase-shift estimation

Next, the phase shifts were identified based on cross-correlation. Each input data was initially filtered through a two-or-
der band-pass filter, whose peak frequency was set as that detected in the previous section. This filtering prevents unrelated
frequency components from correlating. Next, the filtered data were cross-correlated to the sine wave with a phase shift of
zero at 0 s. The maximal point of the cross-correlation value was selected as the phase shift of the data.

5.4. Amplitude estimation

Finally, the amplitude was identified using least mean square method. This method was selected in order to minimize the
squared sum of the error between the sinusoidal approximation and the measured signals. The signals to be matched were
filtered once in Section 5.3, extracted from 2 s until the end. Before this period, the motions were transient, while those dur-
ing this period were regarded almost steady in all the measurements.

Because an unknown parameter, amplitude, is given as a linear coefficient in the input–output relation, the pseudo-
inverse was applied to the estimation.

5.5. Results

The power spectrum of this data is shown in Fig. 6. The estimated motion frequencies are listed in Table 1 along with the
other parameters. The sinusoidal graphs using these parameters are depicted by dotted lines in both Figs. 5 and 7.

Currently, three input signals, two wheel orientations (4) and (5), and the normal force (6) have been obtained. The yaw
moment will be estimated in the next section, based on computer simulations.
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Fig. 6. Power spectrum of two wheel deviation.

Table 1
Estimated parameters. f̂ is an estimate of the skateboard motion, /̂1; /̂2 and /̂F is estimates of the phase lag of the front wheel motion, the rear wheel motion,
and the normal force, respectively, âA1 and âA2 are estimates of the amplitude of the front and rear wheel rotation, respectively, bF A and bT A are estimates of the
amplitude of the normal force and yaw moment, respectively.

f̂ [Hz] /̂1 [�] /̂2 [�] /̂F [�] âA1 [�] âA2 [�] bF A [N] bT A [Nm]

1st 2.89 138.4 147.7 10.4 15.0 32.1 �105.5 10.2
2nd 2.94 114.3 140.8 132.3 23.3 32.9 �34.1 4.6
3rd 2.87 0.00 43.3 8.7 21.5 19.6 �33.4 3.1
4th 2.48 51.8 29.5 37.5 11.6 12.4 13.8 6.9
5th 3.11 �15.2 19.0 �5.1 22.4 27.8 �33.8 3.7
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6. Simulation for torque estimation

The yaw moment cannot be measured in our experimental setup. Here, we estimate it using dynamical simulations of a
reduced-order model, as described in Section 3.

Only one unknown parameter exists: the amplitude of the yaw moment bT A. Several parameter values were tried and then
examined to determine whether the traveling distance in the goal direction matches the measurement data well, in the sense
that the least mean square of the error between the measurement and simulation data is small. In fact, bT A was changed in
increments of 0.1 N m.

For the simulation, a fourth-order Runge–Kutta method was applied with the step size 1/120 s. The parameters that were
set based on the actual board as well as the subject are shown in Appendix C.

The optimal values in each trial are also shown in the rightmost row of Table 1. In addition, the simulation results using
input signals (6) and (5) with the parameters of the fifth trial in Table 1 are depicted in Fig. 8. Although the simulated and
measured data of the lateral deviation and the board orientation did not matched well, the traveling distance to the goal
direction, which was selected for the evaluation for parameter estimation, showed similar trajectories.

These results demonstrate that the sinusoidal inputs for two-wheel orientations, normal force, and the yaw moment
could propel a reduced-order model of a two-wheeled skateboard.

7. Discussion

The sinusoidal inputs constructed from the measurement data successfully drove the reduced-order model of the two-
wheeled skateboard. The trajectory of the board’s traveling direction matched the measurement data well. This fact implies
that if a human produces the forces by foot back-and-forth motions and steers the front and rear wheels in a sinusoidal man-
ner, he can probably propel this board.

To investigate the robustness of this motion, parameters related to the input signals were changed one at a time in some
ranges. The centered values are f̂ ¼ 3 ½Hz�; bF A ¼ �30 ½N�; bT A ¼ 4 ½Nm�; â1A ¼ 20 ½��; â2A ¼ 25 ½��; /̂F ¼ 0 ½��; /̂1 ¼ 0 ½��, and
/̂2 ¼ 0 ½��. A traveling distance, i.e., the forward position over the first 5 s when starting from zero velocity, is shown in
Fig. 9. As expected, large wheel amplitude and yaw moment allow the board to travel a long distance, while the effect of
the lateral force on the traveling direction is small. The traveling distance changes symmetrically with the phase difference:
the changes to the traveling distance are almost the same leads and lags of the same phase. In addition, the traveling distance
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Fig. 7. Input reconstruction with filtered data.
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increases because of the phase difference of the rear wheel, while it decreases because of that of the front wheel. This indi-
cates that the wheel should be oriented so that the yaw moment is easily produced, that is, for a positive counter-clockwise
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Fig. 8. Comparison of simulation results from reconstruct inputs with measurement data.
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moment, the front wheel should face left, while the rear one should face right at the start. Some combination of the phasic
relations as well as the amplitude among inputs produces the backward motions, which may provide us with some hints of
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propulsion mechanism of skateboard. Anyway, independent of the deviation of several parameters, the sinusoidal inputs can
propel the board, indicating the robustness of the sinusoidal propulsion with respect to the parameter variations.
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The coincidence of the time-based trajectory to the goal direction implies the validity of the dynamical model of the two-
wheeled skateboard. However, the variation of the estimated parameters is not so small. In Table 1, although the motion
frequency is commonly 3 Hz, positive and negative values are found for the other parameters. In the first trial, where the
data largely deviates from the other trials, a multipeak curve was observed (which is not shown in this paper). This fluctu-
ation of the motion frequency enlarges the phase deviation in the sinusoidal approximation from the measured data. Con-
sequently, a slight decline in the frequency largely affects the phase and amplitude estimation. To obtain consistent data, it is
desirable that the subject is proficient in producing the precise periodic motion of the skateboard.

In addition, the final confirmation of the model validity requires the measurement of the yaw moment in order to com-
pare the estimated value from the simulations. Our experimental setup does not provide this data. In the future, we will
introduce a measurement system for the yaw moment in order to complete the modeling process.
8. Conclusion

Mobility based on the passive wheel has some advantages in terms of cost and safety. Skateboards are a type of mobility
with passive wheels. Of the various types of skateboards, a two-wheeled skateboard was considered in this study because
this type of skateboard can be driven without kicking the ground, that is, by using only body motions on the board.

In order to investigate the dynamics of the propulsion mechanism, both computer simulations and motion measurements
were adopted. For the computer simulations, a reduced-order model was introduced, assuming that lateral balance is always
maintained by human-waist extension/flexion, and that the wheel orientations are determined by the CoP of each foot direc-
tion twisting the board body. The inputs of this dynamical model are defined as a yaw moment, a normal force, and two-
wheel orientations, while the outputs are the CoM position in the horizontal plane and the board orientation. This modeling
is deferent from the snakeboard in a point that the normal force to the board is taken into account.

To propel this model, the input data is obtained from the measurement of the human skateboard motion. Because of the
periodicity of the motions, the input data was approximated by sinusoidal functions. Simulation results from these input
trajectories produced similar output data (that is, skateboard trajectories) to the measured data. Thus, a two-wheeled skate-
board can be propelled by applying force and moment in a sinusoidal manner. Although some studies on snakeboard tried
sinusoidal inputs in simulations by change the frequency ratio [8,34,33], this paper originally examined the phase relation
between wheel orientation and yaw moment as well as the effect of a newly-introduced normal force to the forward motion,
and demonstrated that phasic relations affect the traveling distance, symmetrically.

Now, we have obtained a reduced-order model that can describe board propulsion well. In future, we will analytically clar-
ify the propulsion mechanism using this reduced-order model, and then confirm it using a mechanical system, such as robots.
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Appendix A. Motion equation

A.1. Body dynamics

In a reduced-order model of a two-wheel skateboard, it is assumed that the board is symmetrical in the lateral direction,
and thus, the CoM is assumed to be located at the central axis of the board. Furthermore, the center of the wheel orientation
is also located at the central axis, although it is actually deviated because of the eccentricity of the wheel as well as the back-
ward inclination of the axis for the orientation. Under these assumptions, a motion equation of this model is represented in
the horizontal space as
M €Q ¼ AT
CFC þ AT

F FF þ T; ðA:1Þ

Q ¼ X Y h½ �T ; ðA:2Þ

M ¼
Mb 0 0
0 Mb 0
0 0 Ib

264
375; ðA:3Þ

T ¼ FX FY T½ �T ; ðA:4Þ

FC ¼
FC1

FC2

� �
; ðA:5Þ
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FF ¼
FF1

FF2

� �
: ðA:6Þ
Here, (X,Y) is the CoM position in the horizontal space, h is the board orientation, Mb is the mass of the board, Ib is its inertia,
and FX, FY and T are forces or moments from the human on the board. FC1 and FC2 are forces that constrain the wheel velocity,
FF1 and FF2 are the viscous friction of the wheel rotation, and AC and AF comprise a matrix that is given as
AC ¼
cosðhþ a1Þ sinðhþ a1Þ �L1 cos a1

cosðhþ a2Þ sinðhþ a2Þ L2 cos a2

� �
; ðA:7Þ

AF ¼
sinðhþ a1Þ � cosðhþ a1Þ �L1 sina1

sinðhþ a2Þ � cosðhþ a2Þ L2 sina2

� �
; ðA:8Þ
where L1 and L2 represent the distance between the CoM to the rotation center of the front and rear wheel orientations,
respectively. a1 and a2 represent the wheel orientations from the center axis of the board.

A.2. Velocity constraints

The wheels move only in the tangential direction of the wheel orientation, and never in the normal direction. These con-
ditions are described as the following equations:
vw1 ¼ � _xw1 sinðhþ a1Þ þ _yw1 cosðhþ a1Þ; ðA:9Þ
vw2 ¼ � _xw2 sinðhþ a2Þ þ _yw2 cosðhþ a2Þ; ðA:10Þ
_xw1 cosðhþ a1Þ þ _yw1 sinðhþ a1Þ ¼ 0; ðA:11Þ
_xw2 cosðhþ a2Þ þ _yw2 sinðhþ a2Þ ¼ 0: ðA:12Þ
Here, vw1 and vw2 represent the speed of the front and rear wheel. (xw1,yw1) and (xw2,yw2) are the positions of the front and
rear wheels in the measurement space (the task-coordinate frame), and are given as
xw1 ¼ X � L1 sin h; ðA:13Þ
yw1 ¼ Y þ L1 cos h; ðA:14Þ
xw2 ¼ X þ L2 sin h; ðA:15Þ
yw2 ¼ Y � L2 cos h; ðA:16Þ
Substituting (A.9)–(A.12) by (A.13)–(A.16), the following equations are obtained:
Vw ¼
vw1

vw2

� �
¼ �AF

_Q ; ðA:17Þ

AC
_Q ¼ 0: ðA:18Þ
Eq. (A.19) in the next section describes the velocity constraints of the wheel movement.

A.3. Motion equation with velocity constraints

The following equation is obtained by differentiating (A.18) with respect to time:
AC
€Q þ _AC

_Q ¼ 0; ðA:19Þ
where
_AC ¼
� _h sinðhþ a1Þ _h cosðhþ a1Þ 0
� _h sinðhþ a2Þ _h cosðhþ a2Þ 0

" #
: ðA:20Þ
In addition, the viscous friction is described as
FF ¼ BVw ¼ �BAF
_Q ; ðA:21Þ

B ¼
b1 0
0 b2

� �
; ðA:22Þ
where b1 and b2 represent the viscous coefficient of the rotation of the front and rear wheel, respectively.
From (A.1), (A.19) and (A.21), the motion equation with velocity constraints is given as follows:
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M �AT
C

�AC O

" #
€Q

FC

" #
¼
�AT

F BAF

_AC

" #
_Q þ

T

O

� �
: ðA:23Þ
Appendix B. Lateral force calculation

The motion equation of the board is given in (A.1). To determine FX, FY and T from the measured data, the motion of the
human is also considered in the horizontal space. Based on the law of action and reaction, its motion equations are
Mh
€Xh ¼ �FX ; ðB:1Þ

Mh
€Yh ¼ �FY ; ðB:2Þ

Ih
€hh ¼ �T; ðB:3Þ
where (Xh,Yh) is the human’s CoM position in the horizontal space, hh is the orientation, Mh is the mass, and Ih is the inertia.
Here, suppose that the CoM of the board and the human always coincide in the X direction during the motion, that is, X � Xh.
Then,
FX � �Mh
€X: ðB:4Þ
Thus, the force from the human in the X direction is detected from the acceleration data of the board CoM in the X direction.
In this study, the normal force was actually obtained based on the relation (6).

The torque from the human, on the other hand, cannot be detected, because the human on the board twists his waist to
drive the board, implying that hb – hh. Therefore, the approximated method for FX detection is not applied to the torque
detection.
Appendix C. Parameters in simulation

In the computer simulation discussed in this study, the following parameter values were set: Mb = 5 kg, Mh = 65 kg,
L1 = L2 = 0.3 m, b1 = b2 = 1.5 Ns/m, Ib = Mb(l2 + w2)/12. Here, l = 0.8 m is the board length and w = 0.2 m is the board width. Ini-
tial values of the simulations are: xð0Þ ¼ yð0Þ ¼ hð0Þ ¼ _xð0Þ ¼ _yð0Þ ¼ _hð0Þ ¼ 0.
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